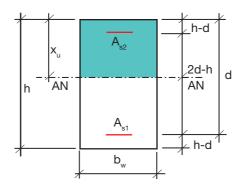


Calcul manuel d'une section


rectangulaire avec armatures symétriques à l'ELU par approximations successives

La solution la plus rapide pour résoudre le problème est obtenue en utilisant les diagrammes d'interaction (voir § 5, chapitre 11 : « Flexion composée », p. 443, avec lecture sur l'axe $O\mu_G$ pour la flexion simple). Dans le cas où l'on ne dispose pas de tels diagrammes, on peut utiliser la méthode par approximations successives exposée ci-après.

1. Hypothèses – Notations

Considérons la section rectangulaire symétrique définie ci-dessous :

$$\mathbf{A}_{\mathrm{s}1} = \mathbf{A}_{\mathrm{s}2} = \mathbf{A}$$

On se place dans le cas où $0 \le x_u \le d$ (section avec au moins une nappe d'aciers tendus).

Cette section est sollicitée en flexion composée sous les sollicitations M_{EdA} et N_{Ed} ; le cas de la flexion simple – N_{Ed} = 0 – est traité au § 5 ci-après.

2. Moment de référence

2.1 Si $x_u < h - d$

Les aciers supérieurs sont tendus.

2.1.1 Remarques

Dans le cas général, on a, pour une poutre, $d \approx 0.9h$ et pour des bétons de classe au moins égale à C50/60, si l'on veut se placer au pivot A :

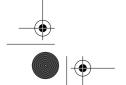
• dans le cas du diagramme σ - ϵ à palier incliné, il faut que :

$$h - d < \alpha_{AB}.d \Leftrightarrow h < (1 + \alpha_{AB})d$$

$$d > \frac{1}{1 + \alpha_{AB}} h = \begin{cases} \frac{1}{1 + 0,1346} h = 0,88.h : S 500 \text{ A} \\ \frac{1}{1 + 0,0722} h = 0,93.h : S 500 \text{ B} \\ \frac{1}{1 + 0,0493} h = 0,95.h : S 500 \text{ C} \end{cases}$$

• dans le cas du diagramme $\sigma\text{--}\epsilon$ à palier horizontal, il faut que :

$$\alpha_{AB} = 0 \implies d > h$$
, ce qui est impossible.

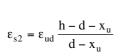

Par conséquent, dans le cas des poutres $(d \approx 0.9h)$, on ne peut se trouver au pivot A que pour des bétons de classe au moins égale à C50/60 avec des aciers S 500 A.

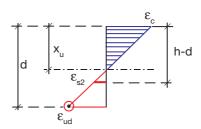
2.1.2 Cas du pivot A

Les aciers avec diagramme σ - ϵ à palier horizontal ne permettent pas au diagramme des déformations de passer par le pivot A.

2.1.2.1 Aciers supérieurs

Au pivot A, l'allongement des aciers inférieurs est invariable et vaut ϵ_{ud} .





Allongement des aciers supérieurs :

Contrainte des aciers supérieurs supposée prise sur la droite de Hooke :

$$\sigma_{s2} = E_s.\varepsilon_{s2} = 2.10^5.\varepsilon_{ud} \frac{h - d - x_u}{d - x_u}.$$
 [1]

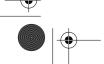
Cette contrainte est maximale pour $x_u = 0$ et vaut alors :

$$\sigma_{s2, max} = 2.10^5 . \epsilon_{ud} \left(\frac{h}{d} - 1\right).$$

Pour les aciers S 500, $\sigma_{s2,\ max}$ reste sur la droite de Hooke tant que :

$$\sigma_{s2, \text{ max}} \le f_{yd} \iff 2.10^5.\epsilon_{ud} \left(\frac{h}{d} - 1\right) \le f_{yd} = 435 \text{ MPa},$$

nous en déduisons :


$$\sigma_{s2, \text{ max}} \le f_{yd} \quad \Leftrightarrow \quad \frac{h}{d} \le \frac{435}{2.10^5.\epsilon_{ud}} + 1$$

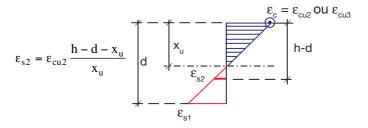
$$\Rightarrow \frac{h}{d} \le \begin{cases} \frac{435}{2.10^5.22, 5.10^{-3}} + 1 = 1,097 : \text{classe A} \\ \frac{435}{2.10^5.45.10^{-3}} + 1 = 1,048 : \text{classe B} \\ \frac{435}{2.10^5.67, 5.10^{-3}} + 1 = 1,032 : \text{classe C} \end{cases}$$

$$d \ge \begin{cases} 0.91.\text{h} : \text{classe A} \\ 0.95.\text{h} : \text{classe B} \\ 0.97.\text{h} : \text{classe C} \end{cases}$$

Comme pour une poutre d≈0,9h, nous ne sommes pas assurés que la contrainte des aciers supérieurs soit toujours située sur la droite de Hooke.

Pratique de l'eurocode 2

2.1.2.2 Aciers inférieurs


Au pivot A, l'allongement des aciers inférieurs étant invariable et égal à ϵ_{ud} , la contrainte correspondante vaut (voir § 2.4.2.1, chapitre 3 : « Béton armé – Généralités », p. 53) :

$$\sigma_{s1} = \begin{cases} 454 \text{ MPa} : \text{S} 500 \text{ A}, \\ 466 \text{ MPa} : \text{S} 500 \text{ B}, \\ 493 \text{ MPa} : \text{S} 500 \text{ C}. \end{cases}$$

2.1.3 Cas du pivot B

2.1.3.1 Aciers supérieurs

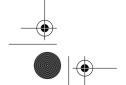
Allongement des aciers supérieurs :

Contrainte des aciers supérieurs supposée prise sur la droite de Hooke :

$$\sigma_{s2} = E_s.\varepsilon_{s2} = 2.10^5.\varepsilon_{cu2} \frac{h - d - x_u}{x_u}.$$
 [1']

2.1.3.2 Aciers inférieurs

Allongement des aciers inférieurs :


$$\varepsilon_{\rm s1} = \varepsilon_{\rm cu2} \, \frac{d-x_{\rm u}}{x_{\rm u}}$$

Contrainte des aciers inférieurs supposée prise sur la droite de Hooke :

$$\sigma_{s1} = E_s.\epsilon_{s1} = 2.10^5.\epsilon_{cu2} \frac{d-x_u}{x_u}.$$

Pour les aciers S 500 et des bétons de classe au plus égale à C50/60, σ_{s1} reste sur la droite de Hooke tant que :

$$\sigma_{s1} \le f_{yd} \iff \overbrace{2.10^5.3, 5.10^{-3}}^{700} \frac{d - x_u}{x_u} \le f_{yd}.$$

Nous en déduisons :

$$x_u \ge \frac{700.d}{700 + f_{vd}} = \frac{700.d}{700 + 435} = 0,62.d$$

Comme nous avons supposé que $x_u \le h - d$, pour les poutres $d \approx 0,9h$ donne $x_u \le 0,1.d$. Il en résulte que la contrainte des aciers inférieurs se trouve toujours sur le palier (horizontal ou incliné) du diagramme contraintes-déformations de l'acier.

2.2 Si $x_u = h - d$

L'axe neutre passant par le centre de gravité des aciers supérieurs :

$$\varepsilon_{s2} = 0 \implies \sigma_{s2} = 0.$$

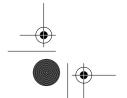
D'où le moment que peut équilibrer la section, rapporté aux aciers inférieurs dans le cas où $x_u = h - d$:

$$M_{RS} = \lambda . b_w (h - d) f_{cu} \left[d - \frac{\lambda}{2} (h - d) \right],$$

$$M_{RS} = \lambda . b_w . d^2 . f_{cu} \left(\frac{h}{d} - 1 \right) . \left(1 + \frac{\lambda}{2} - \frac{\lambda}{2} . \frac{h}{d} \right)$$

$$M_{RS} \,=\, \Big(\frac{h}{d}-1\Big). \bigg[\Big(\lambda + \frac{\lambda^2}{2}\Big) - \frac{\lambda^2}{2}.\frac{h}{d}\bigg] \,b_w.d^2.f_{cu} \,. \label{eq:mrs}$$

Nous remarquerons que pour les bétons de classe au moins égale à C50/60, nous avons $\lambda = 0.8$ et :


$$\lambda + \frac{\lambda^2}{2} = 0.8 + \frac{0.8^2}{2} = 1.12$$

$$\frac{\lambda^2}{2} = \frac{0.8^2}{2} = 0.32$$

$$\Rightarrow M_{RS} = \left(\frac{h}{d} - 1\right) \cdot \left(1.12 - 0.32 \frac{h}{d}\right) b_w \cdot d^2 \cdot f_{cu}$$

2.3 Si $x_u > h - d$

Voir § 3.2 ci-après.

3. Mise en équation du problème

3.1 Cas où $M_{EdA} \leq M_{RS}$ ($\Leftrightarrow x_u h - d$)

Les aciers supérieurs sont tendus et les équations d'équilibre donnent :

$$\begin{cases} N_{Ed} = \lambda.b_{w}.x_{u}.f_{cu} - A(\sigma_{s2} + \sigma_{s1}), \\ M_{EdA} = \lambda.b_{w}.x_{u}.f_{cu}\left(d - \frac{\lambda}{2}x_{u}\right) - A.\sigma_{s2}(2d - h), \end{cases}$$

avec:

• au pivot A si
$$x_u \le \frac{\varepsilon_{cu2}}{\varepsilon_{cu2} + \varepsilon_{ud}} d$$
:

$$\varepsilon_{s2} = \varepsilon_{ud} \frac{h - d - x_u}{d - x_u},$$

$$\Rightarrow \begin{cases} \text{si } \epsilon_{s2} < \epsilon_{yd} = \frac{f_{yd}}{E_s} : \sigma_{s2} = E_s. \\ \epsilon_{s2} = 2.10^5. \\ \epsilon_{s2} = \epsilon_{yd} = \frac{f_{yd}}{E_s} : \sigma_{s2} = \begin{cases} A + B. \\ \epsilon_{s2} : \text{diagramme } \sigma - \epsilon \text{ à palier incliné,} \\ f_{yd} : \text{diagramme } \sigma - \epsilon \text{ à palier horizontal.} \end{cases}$$

les coefficients A et B sont ceux figurant au § 2.4.2.1, chapitre 3 : « Béton armé – Généralités », p. 53, suivant la classe d'aciers considérés (pour les aciers avec diagramme σ - ϵ à palier horizontal, on ne peut se trouver au pivot A),

$$\varepsilon_{s1} = \varepsilon_{ud}$$

$$\Rightarrow \quad \sigma_{s1} = \begin{cases} 454 \text{ MPa} : \text{S} 500 \text{ A}, \\ 466 \text{ MPa} : \text{S} 500 \text{ B}, \\ 493 \text{ MPa} : \text{S} 500 \text{ C}. \end{cases}$$

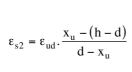
• au pivot B si
$$x_u > \frac{\varepsilon_{cu2}}{\varepsilon_{cu2} + \varepsilon_{ud}} d$$
:

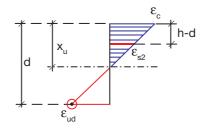
$$\varepsilon_{s2} = \varepsilon_{cu2} \frac{h - d - x_u}{x_u},$$

$$\Rightarrow \begin{cases} \text{si } \epsilon_{s2} < \epsilon_{yd} = \frac{f_{yd}}{E_s} : \sigma_{s2} = E_s. \epsilon_{s2} = 2.10^5. \epsilon_{s2} \\ \\ \text{si } \epsilon_{s2} \ge \epsilon_{yd} = \frac{f_{yd}}{E_s} : \sigma_{s2} = \begin{cases} A + B. \epsilon_{s2} : \text{diagramme } \sigma - \epsilon \text{ à palier incliné,} \\ \\ f_{yd} : \text{diagramme } \sigma - \epsilon \text{ à palier horizontal.} \end{cases}$$

$$\varepsilon_{s1} = \varepsilon_{cu2} \frac{d - x_u}{x_u},$$

$$\Rightarrow \quad \sigma_{s1} = \begin{cases} A + B.\epsilon_{s1} : \text{diagramme } \sigma - \epsilon \text{ à palier inclin\'e,} \\ f_{yd} : \text{diagramme } \sigma - \epsilon \text{ à palier horizontal,} \end{cases}$$


 A_{s1} et x_u sont inconnus a priori.


3.2 Cas où $M_{EdA} > M_{RS}$ ($\Leftrightarrow x_u > h - d$)

Les aciers supérieurs sont comprimés.

3.2.1 Cas où h – d < $x_u \le \frac{\epsilon_{cu2}}{\epsilon_{cu2} + \epsilon_{ud}}$ d et où le diagramme $\sigma - \epsilon$ des aciers est à palier incliné

On est au pivot A et le raccourcissement des aciers supérieurs vaut :

D'où leur contrainte supposée prise sur la droite de Hooke :

$$\sigma_{s2} = E_s \cdot \varepsilon_{s2} = 2.10^5 \cdot \varepsilon_{ud} \frac{x_u - h + d}{d - x_u}$$
 [4]

Cette contrainte ne peut atteindre f_{yd} que si :

$$\sigma_{s2} \ge f_{yd} \iff 2.10^5.\varepsilon_{ud} \frac{x_u - h + d}{d - x_u} \ge f_{yd},$$

$$x_{\mathrm{u}} \geq \frac{\mathrm{d.f_{yd}} + 2.10^{5}.\epsilon_{\mathrm{ud}}\left(h - \mathrm{d}\right)}{2.10^{5}.\epsilon_{\mathrm{ud}} + \mathrm{f_{yd}}}$$

Ou, comme on a supposé $x_u \le \frac{\varepsilon_{cu2}}{\varepsilon_{cu2} + \varepsilon_{ud}} d$, si :

$$\frac{2.10^5.\epsilon_{\rm ud}.h - d\left(2.10^5.\epsilon_{\rm ud} - f_{\rm yd}\right)}{2.10^5.\epsilon_{\rm ud} + f_{\rm yd}} \leq \frac{\epsilon_{\rm cu2}}{\epsilon_{\rm cu2} + \epsilon_{\rm ud}} \, d.$$

Cette circonstance ne peut se rencontrer que si :

$$2.10^5.\epsilon_{\rm ud}.h - 2.10^5.\epsilon_{\rm ud}.d + {\rm d.f_{yd}} \leq 2.10^5.\epsilon_{\rm ud} \, \frac{\epsilon_{\rm cu2}}{\epsilon_{\rm cu2} + \epsilon_{\rm ud}} \, d + \frac{\epsilon_{\rm cu2}}{\epsilon_{\rm cu2} + \epsilon_{\rm ud}} \, {\rm d.f_{yd}}$$

$$f_{yd} \leq \frac{-2.10^5.\epsilon_{ud}.h + 2.10^5.\epsilon_{ud}\bigg(1 + \frac{\epsilon_{cu2}}{\epsilon_{cu2} + \epsilon_{ud}}\bigg)d}{\bigg(1 - \frac{\epsilon_{cu2}}{\epsilon_{cu2} + \epsilon_{ud}}\bigg)d}$$

$$f_{yd} \leq 2.10^5.\epsilon_{ud} \; \frac{-h + \left(1 + \frac{\epsilon_{cu2}}{\epsilon_{cu2} + \epsilon_{ud}}\right) d}{\left(1 - \frac{\epsilon_{cu2}}{\epsilon_{cu2} + \epsilon_{ud}}\right) d} \; ,$$

Ce qui conduit, dans le cas général où $h \approx 1,1.d$ et où $\epsilon_{cu2} = 3,5 \%$ $(f_{ck} \le 50 \text{ MPa})$ à :

$$f_{yd} \le 2.10^5 \cdot \varepsilon_{ud} \frac{-1.1 + \left(1 + \frac{\varepsilon_{cu2}}{\varepsilon_{cu2} + \varepsilon_{ud}}\right)}{1 - \frac{\varepsilon_{cu2}}{\varepsilon_{cu2} + \varepsilon_{ud}}}$$

$$f_{yd} \leq \begin{cases} 180 \text{ MPa} : \text{S} 500 \text{ A} \left(\epsilon_{ud} = 22,5 \%_o \right) \\ -270 \text{ MPa} : \text{S} 500 \text{ B} \left(\epsilon_{ud} = 45 \%_o \right) \\ -720 \text{ MPa} : \text{S} 500 \text{ C} \left(\epsilon_{ud} = 67,5 \%_o \right) \end{cases}$$

Conclusion

Dans le cas envisagé $(h - d < x_u \le \frac{\varepsilon_{cu2}}{\varepsilon_{cu2} + \varepsilon_{ud}} d)$, si l'on emploie des aciers

S 500, f_{vd} = 435 MPa > 180 MPa et la contrainte des aciers supérieurs ne peut atteindre f_{vd}.

Les équations d'équilibre s'écrivent donc :

$$\begin{cases} N_{Ed} = \lambda.b_w.x_u.f_{cu} + A.\sigma_{s2} - A.\sigma_{s1} \\ = \lambda.b_w.x_u.f_{cu} - A.(\sigma_{s1} - \sigma_{s2}), \\ M_{EdA} = \lambda.b_w.x_u.f_{cu} \left(d - \frac{\lambda}{2}x_u\right) + A.\sigma_{s2}(2d - h), \end{cases}$$
 [5]

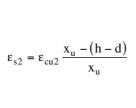
$$M_{EdA} = \lambda . b_w . x_u . f_{cu} \left(d - \frac{\lambda}{2} x_u \right) + A. \sigma_{s2} (2d - h), \tag{6}$$

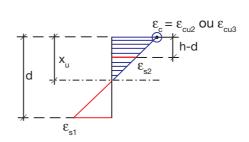
.

Annexes

avec:

$$\sigma_{s2} = E_s.\epsilon_{s2} = 2.10^5.\epsilon_{ud} \frac{x_u - h + d}{d - x_u} \text{ et } \sigma_{s1} = \begin{cases} 454 \text{ MPa} : \text{S} 500 \text{ A}, \\ 466 \text{ MPa} : \text{S} 500 \text{ B}, \\ 493 \text{ MPa} : \text{S} 500 \text{ C}. \end{cases}$$


 A_{s1} et x_u sont inconnus a priori.


3.2.2 Autres cas

Il s'agit des cas suivants:

- $x_u > \frac{\epsilon_{cu2}}{\epsilon_{cu2} + \epsilon_{ud}} d$ pour les aciers avec diagramme σ - ϵ à palier incliné ;
- aciers avec diagramme σ - ε à palier horizontal, quelle que soit la valeur de x_u .

On est au pivot B et le raccourcissement des aciers supérieurs vaut :

D'où leur contrainte supposée prise sur la droite de Hooke :

$$\sigma_{s2} = E_s.\varepsilon_{s2} = 2.10^5.\varepsilon_{cu2} \frac{x_u - (h - d)}{x_u}.$$
 [7]

Cette valeur n'atteint f_{vd} que si :

$$\sigma_{s2} \ge f_{yd} \Leftrightarrow 2.10^5 \cdot \varepsilon_{cu2} \frac{x_u - (h - d)}{x_u} \ge f_{yd}$$

$$x_u \ge \frac{2.10^5 \cdot \varepsilon_{cu2} (h - d)}{2.10^5 \cdot \varepsilon_{cu2} - f_{vd}} = x_e$$
.

Ce qui conduit pour les aciers S 500 et $h \approx 1,1.d$ à :

$$x_{e} = \frac{2.10^{5} \cdot \varepsilon_{cu2}}{2.10^{5} \cdot \varepsilon_{cu2} - f_{vd}} (h - d)$$
 [8]

Remarque

Pour des bétons de classe de résistance au plus égale à C50/60 : ϵ_{cu2} = 3,5 % et pour des aciers S 500 :

$$x_{e} = \frac{2.10^{5}.3,5.10^{-3}}{2.10^{5}.3,5.10^{-3} - 435} (h - d) = 2,64 (h - d)$$
 [8']

Conclusion

En posant : $x_e = \frac{2.10^5 \cdot \epsilon_{cu2}}{2.10^5 \cdot \epsilon_{cu2} - f_{vd}} (h - d)$:

1/ si $h - d < x_u \le x_e$, les équations d'équilibre s'écrivent :

$$\begin{cases} N_{Ed} = \lambda.b_w.x_u.f_{cu} + A.(\sigma_{s2} - \sigma_{s1}) \\ \\ = \lambda.b_w.x_u.f_{cu} - A.(\sigma_{s1} - \sigma_{s2}), \end{cases}$$

$$M_{EdA} = \lambda.b_w.x_u.f_{cu} \left(d - \frac{\lambda}{2}x_u\right) + A.\sigma_{s2}(2d - h),$$
[9]

$$\mathbf{M}_{\mathrm{EdA}} = \lambda.\mathbf{b}_{\mathrm{w}}.\mathbf{x}_{\mathrm{u}}.\mathbf{f}_{\mathrm{cu}}\left(\mathbf{d} - \frac{\lambda}{2}\mathbf{x}_{\mathrm{u}}\right) + \mathbf{A}.\sigma_{\mathrm{s}2}(2\mathbf{d} - \mathbf{h}), \tag{10}$$

avec:

$$\sigma_{s2} = 2.10^5 \cdot \varepsilon_{cu2} \frac{x_u - (h - d)}{x_u}$$

$$\varepsilon_{\rm s1} = \varepsilon_{\rm cu2} \, \frac{\rm d - x_{\rm u}}{\rm x_{\rm u}},$$

$$\Rightarrow \begin{cases} \text{si } \epsilon_{s1} < \epsilon_{yd} = \frac{f_{yd}}{E_s} : \sigma_{s1} = E_s. \epsilon_{s1} = 2.10^5. \epsilon_{s1} \\ \\ \text{si } \epsilon_{s1} \ge \epsilon_{yd} = \frac{f_{yd}}{E_s} : \sigma_{s1} = \begin{cases} A + B. \epsilon_{s1} : \text{diagramme } \sigma - \epsilon \text{ à palier incliné,} \\ \\ f_{yd} : \text{diagramme } \sigma - \epsilon \text{ à palier horizontal,} \end{cases}$$

 A_{s1} et x_n sont inconnus a priori.

2/ si $x_u > x_e$, $\sigma_{s2} \ge f_{ed}$ et les équations d'équilibre deviennent :

$$\begin{cases} N_{Ed} = \lambda.b_{w}.x_{u}.f_{cu} + A.(\sigma_{s2} - \sigma_{s1}) \\ = \lambda.b_{w}.x_{u}.f_{cu} - A.(\sigma_{s1} - \sigma_{s2}), \end{cases}$$

$$[9]$$

$$M_{EdA} = \lambda.b_{w}.x_{u}.f_{cu} \left(d - \frac{\lambda}{2}x_{u}\right) + A.\sigma_{s2}(2d - h),$$

$$[10]$$

$$M_{EdA} = \lambda . b_w . x_u . f_{cu} \left(d - \frac{\lambda}{2} x_u \right) + A . \sigma_{s2} (2d - h),$$
 [10]

avec :

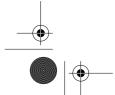
$$\varepsilon_{s2} = \varepsilon_{cu2} \frac{x_u - (h - d)}{x_u},$$

$$\Rightarrow \quad \sigma_{s2} = \begin{cases} A + B.\epsilon_{s2} : \text{diagramme } \sigma - \epsilon \text{ à palier incliné,} \\ f_{yd} : \text{diagramme } \sigma - \epsilon \text{ à palier horizontal.} \end{cases}$$

$$\varepsilon_{s1} = \varepsilon_{cu2} \frac{d - x_u}{x_u},$$

$$\Rightarrow \begin{cases} \text{si } \epsilon_{s1} < \epsilon_{yd} = \frac{f_{yd}}{E_s} : \sigma_{s1} = E_s. \epsilon_{s1} = 2.10^5. \epsilon_{s1} \\ \\ \text{si } \epsilon_{s1} \ge \epsilon_{yd} = \frac{f_{yd}}{E_s} : \sigma_{s1} = \begin{cases} A + B. \epsilon_{s1} : \text{diagramme } \sigma - \epsilon \text{ à palier incliné,} \\ \\ f_{yd} : \text{diagramme } \sigma - \epsilon \text{ à palier horizontal,} \end{cases}$$

4. Méthode par approximations successives


On opère de la façon suivante :

- 1/ déterminer dans quel cas on se trouve en comparant M_{EdA} à M_{RS} (aciers supérieurs comprimés ou tendus, voir § 3.2);
- 2/ en se donnant x_u , calculer les contraintes σ_{s2} et σ_{s1} correspondantes ;
- 3/ en déduire A_{s1} par l'équation d'équilibre des moments ;
- 4/ évaluer N_{Ed} à partir de x_u et A_{s1} trouvé à l'étape 3 ;
- 5/ comparer la valeur de N_{Ed} trouvée à l'étape 4 à celle de $N_{Ed, \, r\acute{e}el}$ et reprendre le calcul depuis l'étape 2 en modifiant la valeur de x_u jusqu'à ce que $N_{Ed, \, calcul\acute{e}} \approx N_{Ed, \, r\acute{e}el}$.

5. Cas de la flexion simple

La seule chose qui change est que N_{Ed} = 0 dans les équations d'équilibre.

Pour les aciers avec diagramme σ - ϵ à palier horizontal, le cas où $x_u > x_e$ ne peut se rencontrer. Dans un tel cas, l'équilibre devrait être assuré par les aciers seuls (voir $\sigma_{s1} = \sigma_{s2} = f_{yd}$ avec $N_{Ed} = 0 \implies x_u = 0$ par l'équation [9]) sans intervention du béton comprimé entourant les armatures supérieures comprimées, ce qui n'est pas possible.

Pratique de l'eurocode 2

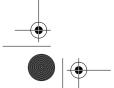
Conclusion 6.

Compte tenu des développements ci-dessus, on voit que, même en flexion simple, la solution la plus rapide est fournie par les diagrammes d'interaction (voir § 5.8, chapitre 11 : « Flexion composée », p. 443, lecture sur l'axe Oμ_G pour la flexion simple).

Les développements précédents ayant été conduits uniquement à l'ELU, il reste à vérifier, à l'ELS, les contraintes du béton comprimé et des aciers tendus lorsque celles-ci sont limitées.

Organigramme 7.

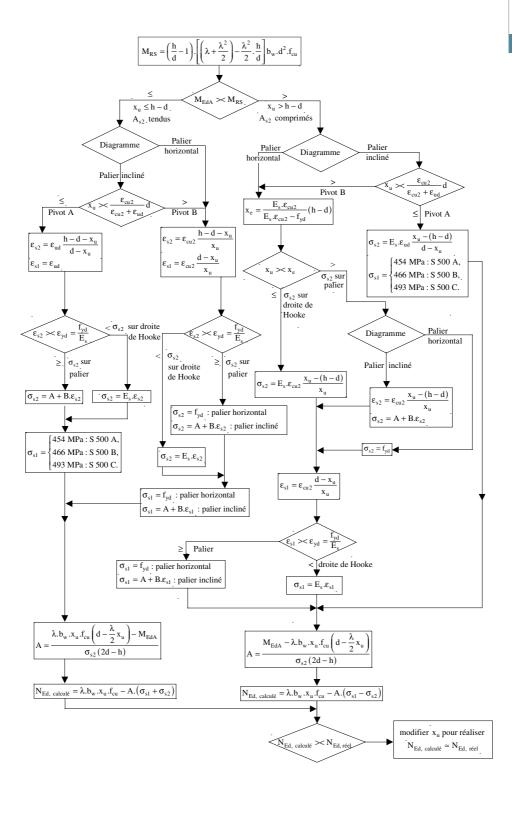
Données:


- géométie de la section : bw, h, d ;
- sollicitations : M_{EdA} et $N_{Ed, r\acute{e}el}$;
- matériaux :

 - $\begin{array}{ll} & \text{b\'eton}: \ f_{cu}, \ \epsilon_{cu2} \ ; \\ & \text{aciers}: \ f_{yd}, \ \epsilon_{ud}, \ \text{forme du diagramme } \sigma\text{--}\epsilon, \ E_s \ ; \end{array}$
- position arbitraire de l'axe neutre : x_u.

Résultats : section d'aciers $A = A_{s1} = A_{s2}$

Remarque


Dans l'organigramme ci-dessous, les coefficients A et B intervenant dans les expressions de $\sigma_{\rm s1}$ et $\sigma_{\rm s2}$ sont ceux figurant au § 2.4.2.1, chapitre 3 : « Béton armé - Généralités », p. 53, suivant la classe d'aciers considérés.

639

Applications numériques 8.

Pose du problème n° 1 – Cas où $M_{EdA} \leq M_{RS}$ 8.1

On considère la section rectangulaire symétrique définie ci-contre.

Matériaux:

• béton : $f_{cu} = 16,7 \text{ MPa}, \ \epsilon_{cu2} = 0,0035 \ ;$

• aciers : $f_{yd} = 435 \text{ MPa}$, $E_s = 2.10^5 \text{ MPa}$.

Sollicitations : $M_{EdA} = 0,160 \text{ mMN},$ $N_{Ed} = 0,12633 \text{ MN}.$

Nous nous proposons de déterminer les armatures dans les cas suivants :

- aciers avec diagramme σ - ε à palier horizontal ($\varepsilon_{ud} = \infty$);
- aciers avec diagramme σ - ϵ à palier incliné (ϵ_{ud} = 45 ‰, B = 727,27 et A = 433,20 pour aciers S 500 B).

8.2 Solution

8.2.1 Cas du diagramme σ - ϵ à palier horizontal

Moment de référence :

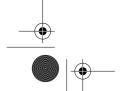
$$\mathbf{M}_{RS} = \left(\frac{\mathbf{h}}{\mathbf{d}} - 1\right) \cdot \left[\left(\lambda + \frac{\lambda^2}{2}\right) - \frac{\lambda^2}{2} \cdot \frac{\mathbf{h}}{\mathbf{d}}\right] \mathbf{b}_{w} \cdot \mathbf{d}^2 \cdot \mathbf{f}_{cu}$$

$$M_{RS} = \left(\frac{0.50}{0.45} - 1\right) \cdot \left[\left(0.8 + \frac{0.8^2}{2}\right) - \frac{0.8^2}{2} \cdot \frac{0.50}{0.45}\right] 1,20.0,45^2.16,7$$

$$M_{RS} = 0.345 \text{ mMN}$$

Position de l'axe neutre :

$$M_{EdA} > < M_{RS}$$


$$M_{EdA} = 0.160 \text{ mMN} < 0.345 \text{ mMN} = M_{RS}$$

 $x_u < h - d$ et les aciers supérieurs sont

Comme h - d = 0.05 m, prenons $x_u = 0.03 \text{ m}$.

Première itération:

diagramme σ - ϵ à palier horizontal \Rightarrow

$$\begin{split} \epsilon_{s2} &= \epsilon_{cu2} \frac{h - d - x_u}{x_u} \\ \epsilon_{s1} &= \epsilon_{cu2} \frac{d - x_u}{x_u} \\ \epsilon_{s1} &= \epsilon_{cu2} \frac{d - x_u}{x_u} \\ \epsilon_{s2} &= 0,0035 \frac{0,50 - 0,45 - 0,03}{0,03} = 0,00233 \\ \epsilon_{s1} &= 0,0035 \frac{0,45 - 0,03}{0,03} = 0,049 \\ \epsilon_{s2} &>< \epsilon_{yd} = \frac{f_{yd}}{E_s} \\ \epsilon_{s2} &= 0,00233 > 0,00218 = \epsilon_{yd} = \frac{435}{2.10^5} \\ \Rightarrow & \sigma_{s2} = f_{yd} = 435 \text{ MPa} \\ \epsilon_{s1} &>< \epsilon_{yd} = \frac{f_{yd}}{E_s} \\ \epsilon_{s1} &= 0,049 > 0,00218 = \epsilon_{yd} = \frac{435}{2.10^5} \end{split}$$

$$\epsilon_{s1} > < \epsilon_{yd} = \frac{f_{yd}}{E_s}$$

$$\epsilon_{s1} = 0,049 > 0,00218 = \epsilon_{yd} = \frac{435}{2.10^5}$$

$$\Rightarrow \sigma_{s1} = f_{yd} = 435 \text{ MPa}$$

$$A = \frac{\lambda.b_w.x_u.f_{cu}\Big(d - \frac{\lambda}{2}x_u\Big) - M_{EdA}}{\sigma_{s2}(2d - h)}$$

$$A = \frac{0.8.1,20.0,03.16,7\Big(0.45 - \frac{0.8}{2}0.03\Big) - 0.160}{435(2.0,45 - 0.50)}$$

 $A = 2.91 \text{ cm}^2$

$$N_{Ed, calcul\acute{e}} = \lambda.b_w.x_u.f_{cu} - A.(\sigma_{s1} + \sigma_{s2})$$

$$N_{Ed, calculé} = 0.8.1, 20.0, 03.16, 7 - 2.91.10^{-4}.(435 + 435)$$

$$N_{Ed. calculé} = 0.228 MN$$

$$N_{\rm Ed,\ calcul\'e} > < N_{\rm Ed,\ r\'eel} \qquad \qquad N_{\rm Ed,\ calcul\'e} = 0,228\ MN > 0,12633\ MN = N_{\rm u,\ r\'eel}$$

Comme $N_{Ed, calcul\'e} > N_{Ed, r\'eel}$, nous allons augmenter la valeur de x_u , ce qui aura pour effet de diminuer la contrainte σ_{s2} (mais faiblement) et d'augmenter la section d'aciers A (fortement) d'où le terme soustractif de N_{Ed, calculé} augmente.

Itérations suivantes :

Étant donné la pente du diagramme contraintes-déformations de l'acier, σ_{s2}

Essayons $x_u = 0.045 \text{ m}$ et cherchons, par itérations successives à réaliser $N_{Ed, calcul\acute{e}} \approx N_{Ed, r\acute{e}el}$.

0

 $x_e = \frac{E_s \cdot \varepsilon_{cu2}}{E_s \cdot \varepsilon_{cu2} - f_{yd}} (h - d)$

$$x_e = \frac{E_s \cdot \varepsilon_{cu2}}{E_s \cdot \varepsilon_{cu2} - f_{yd}} (h - d)$$

Géométrie:

1,2 m 0,5 m 0,45 m

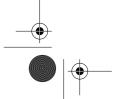
Béton:

25 MPa 16,7 MPa 0,8 0,0035

 f_{ck} f_{cu} λ ε_{cu2}

Aciers:

435 MPa 0


435 1000000

: valeur ou f_{yd} pour diagramme σ – ϵ à palier horizontal : valeur ou infini (1 000 000) pour diagramme σ – ϵ à palier horizontal

: valeur ou 0 pour diagramme $\sigma \!\! - \!\! \epsilon$ à palier horizontal

0,16 mMN 0,12633 MN

0,002175 M_{EdA} N_{Ed} , réel Sollicitations:

Calculs itératifs : x _n	"X	00'0	0,045	0,0375	0,03375	0,031875 0	,0328125 0,0	6328125 0,03	ANDELEGO, 1980-LEGOU (EDALEGO, DALTZERO, ELORZERO, TRACERO, COMMERCIO ESPEZERO, DOMESTERO, EDALTZERO, ELORZERO,	164063 0,03	\$222656 0,03	3251953 0,03	3266602 0,03	3259277 0,033	255615 0,033	257446 0,033	256531 0,033	256989 0,03	325676
	Pivot	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	m
Piv B	$\varepsilon_{x2} = \varepsilon_{cn2} \frac{h - d - x_u}{x_u}$	0,002333333	0,00233333 0,000388889 0,001166667 0,001685185 0,001990196 0,001833333 0,001788216 0,001795508 0,001776796 0,00176799 0,001762849 0,001760531	001166667 0,0	01685185 0,0	01990196 0,00	1833333 0,00	1758216 0,00	1795508 0,001	176796 0,00	0176749 0,00	1762849 0,00	1760531 0,0	0,00176169 0,001762269 0,001761979 0,001762124 0,001762082 0,001762088	762269 0,001	100'0 6'619'	762124 0,001	762052 0,001	762088
	$\mathbb{E}_{\zeta,2} = \mathbb{E}_{\zeta,2} \frac{X_{\mu} - (h - d)}{X_{\mu}}$	-0,00233333	-0,00023333 -0,00178822 -0,00116667 -0,00168519 -0,0019902 -0,0018333 -0,00178822 -0,00179551	,00116667 -0,) 00168519 -	0,0019902 -0,0	00183333 -0,0	0175822 -0,0		0.0- 897710	0176749 -0,0	0176285 -0,0	0176053 -0,0	4,00017628 4,00017628 4,00017628 4,00017629 4,00017629 4,00017629 4,000176198 4,000176218 4,000176208 4,000176208	176227 -0,00	176198 -0,00	176212 -0,00	176205 -0,00	176209
Piv A	$\varepsilon_{s2} = \varepsilon_{ind} \frac{h - d - x_u}{d - x_u}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	$\varepsilon_{s,2} = \varepsilon_{wi} \frac{x_w - (h - d)}{d - x_w}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Piv B	$\varepsilon_{s1} = \varepsilon_{crt2} \frac{d - x_u}{x_u}$	0,049	0,0315	0,0385 0,0	0,0385 0,043166667 0,045911765	45911765	0,0445 0,04	3823944 0,04	0.0445 0.04382394 0.044159574 0.043991166 0.043907407 0.043865639 0.043865208 0.043865208 0.043860423 0.043857815 0.043859119 0.043858467 0.043858793	991166 0,04	907407 0,04	865639 0,04	8844782 0,04	3855208 0,043	860423 0,043	857815 0,043	859119 0,042	858467 0,043	858793
Piv A	$s_{1} = s_{ad}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Retenu	8,52	0,002333333 (0.00233333 0.00038889 0.001166667 0.001683185 0.001990196 0.000183333 0.00178210 0.00179530 0.00177530 0.00177530 0.00177530 0.00177530 0.00177530 0.00177530	0,0 79991100	01685185 0,0	00'0 96106610	1833333 0,00	1758216 0,00	1795508 0,001	00'0 96292	0176749 0,00	1762849 0,00	1760531 0,0	100'0 6919110	762269 0,001	100'0 6'619'	762124 0,001	762052 0,001	762088
Retenu	83	0,049	0,0315	0,0385 0,0	0,0385 0,043166667 0,045911765	45911765	0,0445 0,04	3823944 0,04	0.0445 0.043823944 0.044159574 0.043991166 0.043907407 0.043864639 0.04384732 0.043855208 0.04386923 0.043857815 0.043859119 0.043858467 0.043858793	991166 0,043	907407 0,04	865639 0,04	8844782 0,04	3855208 0,043	860423 0,043	857815 0,043	859119 0,043	858467 0,042	858793
Hooke	$\sigma_{s2} = E_s \cdot \varepsilon_{s2}$	0	0.77777778 23333333 357027027 366666667 351451925 3550406548 255359462 35546924 352,60564 352,60567 352,60567 3566667 351460581 352,400581 355,400581	3,3333333 3.	7,037037 398	3,0392157 366	,6666667 351	6431925 359,	1016548 355,3	592462 353,	1979424 352;;	5697504 352,	1062674 352,	3379579 352,4	538414 352,3	958964 352,4	248681 352,4	103821 352	417625
	$\sigma_{sl} = E_s \varepsilon_{sl}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Palier	$\sigma_{s2} = A + B \varepsilon_{s2}$	435	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	$G_{sl} = A + B.\epsilon_{sl}$	435	435	435	435	435	435	435	435	435	435	435	435	435	435	435	435	435	435
Retenu	σ_{s2}	435	435 77,7777778 233,3333333	3,3333333 3.	398 750750,77	,0392157 366	,6666667 351	6431925 359,	337,037037 398,0392157 366,6666667 351,6431925 359,1016548 355,592462 353,4979424 352,697504 352,1063674 352,3579579 352,458414 352,398864 352,498861 352,4103821	592462 353,	1979424 352,	5697504 352,	1062674 352,	3379579 352,4	538414 352,3	958964 352,4	248681 352,4	103821 352	352,417625
Retenu	σ_{sl}	435	435	435	435	435	435	435	435	435	435	435	435	435	435	435	435	435	435
$M_{EM} \le M_{RS}$	$M_{Edd} \le M_{RS} \qquad A = \frac{\lambda_D_w \cdot x_u \cdot f_{co} \left(d - \frac{\lambda}{2} x_u\right) - M_{Edd}}{\sigma_{s2} \left(2d - h\right)}$	2,911521839	2911521899 48,74852771 10,8773571 4,565819615 3,084751533 4,760724574 5,190002785 4,971432265 5,079762256 5,12463448 5,16266574 5,176117577 5,169186342 5,166723565 5,16745776 5,16658978 5,167021853 5,167021853 5,167021853	,87735714 5,6	50819615 3,9	84751533 4,76	0324574 5,19	0002785 4,97	1432263 5,079	765256 5,13-	1643468 5,16	2262674 5,17	51175777 5,116	186342 5,165	723563 5,167	454716 5,16	658908 5,167	021883 5,166	805478
	$N_{Ed, \text{ calcule}} = \lambda.b_{w}x_{s}f_{cs.} - A.(\sigma_{s1} + \sigma_{s2})$	0,2276576	02276576 -1,77827697 -4,12577004 0,104815797 0,176076571 0,144430647 0,125296964 0,135025241 0,130202306 0,127760044 0,1263112 0,125914698 0,12622073 0,12637737 0,12637015 0,12639019 0,12632901	,12577004 0,1	04815797 0,1	79074571 0,14	14430647 0,12	5296964 0,13	5025241 0,130	202306 0,12	760044 0,1	2653112 0,12	5914698 0,12	5223073 0,126	377137 0,126	300115 0,126	338629 0,126	319373 0,126	329001
	$N_{Ed.}$, calcule $>> N_{Ed.}$, recol	٨	٧	٧	v	^	٨	v	٨	^	٨	٨	v	v	^	v		v	v
$M_{Edd} > M_{RS}$	$M_{Edd} > M_{EG} \qquad A = \frac{M_{Edd} - \lambda b_w x_w \cdot f_{co} \left(d - \frac{\lambda}{2} x_w \right)}{\sigma_{s,2} \left(2d - h \right)}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	$N_{Ed. \text{ culculd}} = \lambda.b_{w.} x_{u.} f_{cu.} - A(\sigma_{s1} - \sigma_{s2})$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	N_{Ed} , calculs $> N_{Ed}$, etc.	٧	٧	٧	v	٧	٧	V	v	v	v	v	v	v	v	v	v	v	V

Cas du diagramme σ-ε à palier incliné 8.2.2

Moment de référence :

$$\begin{split} M_{RS} &= \left(\frac{h}{d} - 1\right) \cdot \left[\left(\lambda + \frac{\lambda^2}{2}\right) - \frac{\lambda^2}{d} \cdot \frac{h}{d} \right] b_w \cdot d^2 \cdot f_{cu} \\ M_{RS} &= \left(\frac{0,50}{0,45} - 1\right) \cdot \left[\left(0,8 + \frac{0,8^2}{2}\right) - \frac{0,8^2}{2} \cdot \frac{0,50}{0,45} \right] 1,20.0,45^2 \cdot 16,7 \end{split}$$

Position de l'axe neutre :

$$M_{EdA} > < M_{RS}$$
 $M_{EdA} = 0.160 \text{ mMN} < 0.345 \text{ mMN} = M_{RS}$ $x_u < h - d$ et les aciers supérieurs sont tendus.

 $M_{RS} = 0.345 \text{ mMN}$

Comme h - d = 0.05 m, prenons $x_u = 0.03 \text{ m}$.

Première itération:

diagramme σ-ε à palier incliné

$$x_{u} > < \frac{\epsilon_{cu2}}{\epsilon_{cu2} + \epsilon_{ud}} d \qquad x_{u} = 0,03 \text{ m} < 0,0324 \text{ m} = \frac{3,5}{3,5 + 45} 0,45$$

$$\Rightarrow \text{ Pivot A}$$

$$\epsilon_{s2} = \epsilon_{ud} \frac{h - d - x_{u}}{d - x_{u}} \qquad \epsilon_{s2} = 0,045 \frac{0,50 - 0,45 - 0,03}{0,45 - 0,03} = 0,00214$$

$$\epsilon_{s1} = \epsilon_{ud} \qquad \epsilon_{s1} = 0,045$$

$$\epsilon_{s2} > < \epsilon_{yd} = \frac{f_{yd}}{E_{s}} \qquad \epsilon_{s2} = 0,00214 < 0,00218 = \epsilon_{yd} = \frac{435}{2.10^{5}}$$

$$\Rightarrow \sigma_{s2} = E_{s}.\epsilon_{s2} = 2.10^{5}.0,00214 = 428 \text{ MPa}$$

$$\epsilon_{s1} > < \epsilon_{yd} = \frac{f_{yd}}{E_{s}} \qquad \epsilon_{s1} = 0,045 > 0,00218 = \epsilon_{yd} = \frac{435}{2.10^{5}}$$

$$\Rightarrow \sigma_{s1} = A + B.\epsilon_{s1} = 433,2 + 727,27.0,045$$

$$\sigma_{s1} = 466 \text{ MPa}$$

$$A = \frac{\lambda.b_{w}.x_{u}.f_{cu}\left(d - \frac{\lambda}{2}x_{u}\right) - M_{EdA}}{\sigma_{s2}(2d - h)}$$

 $A = \frac{0.8.1,20.0,03.16,7\left(0.45 - \frac{0.8}{2} \ 0.03\right) - 0.160}{428\left(2.0,45 - 0.50\right)} 10^4$

es 64!

$$A = 2,96 \text{ cm}^2$$

$$N_{Ed, calculé} = \lambda.b_w.x_u.f_{cu} - A.(\sigma_{s1} + \sigma_{s2})$$

$$N_{Ed, calculé} = 0.8.1, 20.0, 03.16, 7 - 2, 96.10^{-4}.(435 + 428)$$

$$N_{Ed. calculé} = 0,216 MN$$

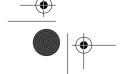
 $N_{Ed, calculé} >< N_{Ed, réel}$

$$N_{Ed, calcul\'e} = 0,216 \text{ MN} > 0,12633 \text{ MN} = N_{Ed, r\'eel}$$

Comme $N_{Ed,\ calcul\'e} > N_{Ed,\ r\'eel}$, nous allons augmenter la valeur de x_u , ce qui aura pour effet de diminuer la contrainte σ_{s2} (mais faiblement) et d'augmenter la section d'aciers A (fortement) d'où le terme soustractif de $N_{Ed,\ calcul\'e}$ augmente.

Itérations suivantes :

Étant donné la pente du diagramme contraintes-déformations de l'acier, $\sigma_{\rm s2}$ varie très vite.


Essayons $x_u = 0,045 \, \text{m}$ et cherchons, par itérations successives à réaliser $N_{\text{Ed, calculé}} \approx N_{\text{Ed, réel}}$.

Pratique de l'eurocode 2

0

 $x_e = \frac{E_s \cdot \mathcal{E}_{cu2}}{E_s \cdot \mathcal{E}_{cu2} - f_{yd}} \left(h - d \right)$

1,2 m 0,5 m 0,45 m

Données:

Géométrie:

Béton:

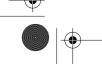
25 MPa 16,7 MPa 0,8 0,0035

Aciers:

435 MPa

727,27 433,2

0,0045


: valeur ou f_{yd} pour diagramme σ – ϵ à palier horizontal : valeur ou infini (1 000 000) pour diagramme σ – ϵ à palier horizontal

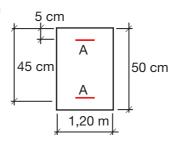
: valeur ou 0 pour diagramme σ — ϵ à palier horizontal

Sollicitations:

0,16 mMN 0,12633 MN $M_{EdA} \ N_{Ed$, réel

Références :	$References: \qquad M_{BS} = \left(\frac{h}{d} - 1\right) \left[\left(\lambda + \frac{\lambda^2}{2}\right) - \frac{\lambda^2}{2} \cdot \frac{h}{d} \right] b_w d^2 J_{cw}$	0,34688	
	α_{AB} , d	0,00347423	
Calculs itératifs : x _u	S: X ₀	0.045 0.045 0.03375 0.0331875 0.03318125 0.03394688 0.03392469 0.03290199 0.03290199 0.0328014 0.0328030 0.0328913 0.03289139 0.03289139 0.03289142	33289742
	Pivot		В
Piv B	$\varepsilon_{x2} = \varepsilon_{cn2} \frac{h - d - x_u}{x_u}$	0 0,00008889 0,00116667 0,00168519 0 0,00018333 0,00178822 0,00179551 0,00181435 0,00181283 0,00181989 0,00181958 0,00181958 0,00181953 0,00181957 0,00181957	00181957
	$e_{s,2} = e_{cu2} \frac{x_u - (b - d)}{x_u}$	0 -0.00083899 -0.0016667 -0.00168313 -0.0017852 -0.0017851 -0.00181955 -0.0018198 -0.0018	756181957
Piv A	$\varepsilon_{s2} = \varepsilon_{md} \frac{h - d - x_{m}}{d - x_{u}}$	0,00214286 0 0 0,000195067 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
	$\varepsilon_{y2} = \varepsilon_{mf} \frac{x_w - (h - d)}{d - x}$	-0,00214386 0 0 0-0,00195967 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
Piv B	$\varepsilon_{x1} = \varepsilon_{cn2} \frac{d - x_{y}}{x_{x}}$	0 0.0315 0.0036 0.00416667 0 0.00445 0.00415957 0.00415957 0.004432918 0.00441744 0.00459717 0.0045923 0.0045971 0.0045771 0.0045771 0.0045771 0.0045771 0.0045771 0.0045771	,0443761
Piv A	$\varepsilon_{s1} = \varepsilon_{sud}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
Retenu	E,22	0,00214286 0,00038899 0,0016667 0,00165519 0,00195067 0,00108353 0,00175822 0,00175822 0,00175851 0,00181999 0,00181999 0,00181998 0,00181998 0,00181953 0,00181957	00181957
Retenu	ا ^د ا	0.045 0.0315 0.0365 0.04316667 0.045 0.0445 0.0482394 0.04415957 0.0443177 0.0443717 0.0443743 0.0443744 0.0443761 0.0443747 0.0443744	,0443761
Hooke	$\sigma_{s2}=E_s.\varepsilon_{s2}$	428,571,429 77,777778 235,333333 331,037037 366,066667 361,643192 359,101655 362,8707 364,7665 364,054034 365,95582 365,876566 365,906973 365,920777 365,91375	3,913375
	$\sigma_{sl} = E_s \varepsilon_{sl}$		0
Palier	$\sigma_{s2} = A + B \varepsilon_{s2}$		0
	$\sigma_{xl} = A + B x_{xl}$	465,9715 456,109005 461,109005 461,50327 465,9715 465,60515 465,07164 465,11094 465,101209 465,47029 465,47029 465,47029 465,47021 465,47021 465,47216 465,473165 465,47348	5,473408
Retenu	922	428,511429 77,777778 233,33333 337,037037 386,06667 351,643192 359,101655 362,8707 364,7653 363,817156 364,034034 362,93582 365,876366 363,908773 365,913775	3,913375
Retenu	σ_{sl}	465,02715 456,100005 461,190805 461,593822 465,92715 465,65315 465,6531594 465,315934 465,301289 465,47029 465,47029 465,478101 465,478101 465,472196 465,473165 465,47346 465,47348	5,473408
$M_{Edd} \le M_{RS}$	$M_{Edd} \leq M_{RS} \qquad A = \frac{\lambda D_{w} x_{w} J_{co} \left(d - \frac{\lambda}{2} x_{w}\right) - M_{Edd}}{\sigma_{s,2} \left(2d - h\right)}$	2,95519467 48,7485327 10,5773571 5,65181962 4,0664883 4,7042245 5,1900279 4,97143246 4,86496471 4,81241855 4,83863482 4,83551782 4,8355178 4,83567182 4,8357619 4,8357619 4,8357619	83596706
	$N_{Ed, \; \mathrm{culcule}} = \lambda.b_w x_w .f_{cw} - A [\sigma_{s1} + \sigma_{s2}]$	0.21661826 -0.18117936 -0.182686 0.08809286 0.1858912 0.12988142 0.10988967 0.11995388 0.12495887 0.1274304 0.12619717 0.12619719 0.1263159 0.1262159 0.1263129 0.1263129 0.1263129	12632264
	N_{Ed} , calculé $ imes N_{Ed}$, réel		v
$M_{ELl} > M_{RS}$	$M_{EM} > M_{BS}$ $A = \frac{M_{EM} - \lambda b_w x_u \cdot f_{co} \left(d - \frac{\lambda}{2} x_u\right)}{\sigma_{s2} \left(2d - h\right)}$		0
	$N_{Ed, \text{ calcule}} = \lambda b_{\text{in}}.x_{\text{in}}.f_{\text{cm}} - A(\sigma_{\text{x1}} - \sigma_{\text{y2}})$		0
	$N_{Ed, \; \mathrm{calcul} \delta} > N_{Ed, \; \mathrm{recol}}$		v

Pose du problème n° 2 – Cas où $M_{EdA} > M_{RS}$ 8.3


On considère la section rectangulaire symétrique définie ci-contre.

Matériaux:

• béton : $f_{cu} = 16,7 \text{ MPa}, \, \varepsilon_{cu2} = 0,0035$;

• aciers : $f_{yd} = 435 \text{ MPa}$, $E_s = 2.10^5 \text{ MPa}$.

Sollicitations : $M_{EdA} = 0.450 \text{ mMN}$, $N_{Ed} = 0.12633 \text{ MN}$.

Nous nous proposons de déterminer les armatures dans les cas suivants :

- aciers avec diagramme σ - ϵ à palier horizontal ($\epsilon_{ud} = \infty$);
- aciers avec diagramme σ - ϵ à palier incliné (ϵ_{ud} = 45 %, B = 727,27 et A = 433,20 pour aciers S 500 B).

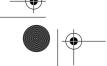
Solution 8.4

8.4.1 Cas du diagramme σ - ϵ à palier horizontal

Moment de référence :

$$\begin{split} M_{RS} &= \left(\frac{h}{d} - 1\right) \cdot \left[\left(\lambda + \frac{\lambda^2}{2}\right) - \frac{\lambda^2}{d} \cdot \frac{h}{d}\right] b_w \cdot d^2 \cdot f_{cu} \\ M_{RS} &= \left(\frac{0.50}{0.45} - 1\right) \cdot \left[\left(0.8 + \frac{0.8^2}{2}\right) - \frac{0.8^2}{2} \cdot \frac{0.50}{0.45}\right] 1,20.0,45^2 \cdot 16,7 \\ M_{RS} &= 0.345 \text{ mMN} \end{split}$$

Position de l'axe neutre :


$$M_{EdA} > < M_{RS}$$
 $M_{EdA} = 0.450 \text{ mMN} > 0.345 \text{ mMN} = M_{RS}$ $x_u > h - d$ et les aciers supérieurs sont comprimés.

Comme h - d = 0.05 m, prenons $x_u = 0.06 \text{ m}$.

Première itération :

$$\begin{split} x_e &= \frac{E_s.\epsilon_{cu2}}{E_s.\epsilon_{cu2} - f_{yd}} (h - d) \quad x_e = \frac{2.10^5.3, 5.10^{-3}}{2.10^5.3, 5.10^{-3} - 435} (0, 50 - 0, 45) = 0,132 \text{ m} \\ x_u &>< x_e \\ &\qquad \qquad x_u = 0,06 \text{ m} < 0,132 \text{ m} = x_e \\ &\qquad \Rightarrow \quad \sigma_{s2} = E_s.\epsilon_{cu2} \frac{x_u - (h - d)}{x_u} \end{split}$$

 $\sigma_{s2} = 2.10^5.0,0035 \frac{0,06 - (0,50 - 0,45)}{0,06} = 117 \text{ MPa}$

$$\varepsilon_{s1} = \varepsilon_{cu2} \frac{d - x_u}{x_u}$$

$$\varepsilon_{\rm s1} = 0,0035 \frac{0,45 - 0,06}{0,06} = 0,0228$$

$$\varepsilon_{s1} > < \varepsilon_{yd} = \frac{f_{yd}}{E_s}$$

$$\varepsilon_{s1} = 0,0228 > 0,00218 = \varepsilon_{yd} = \frac{435}{2.10^5}$$

$$\Rightarrow$$
 $\sigma_{s1} = f_{vd} = 435 \text{ MPa}$

$$A = \frac{M_{EdA} - \lambda.b_{w}.x_{u}.f_{cu}\left(d - \frac{\lambda}{2}x_{u}\right)}{\sigma_{s2}(2d - h)}$$

$$A = \frac{0,450 - 0,8.1,20.0,06.16,7\left(0,45 - \frac{0,8}{2} \ 0,06\right)}{117\left(2.0,45 - 0,50\right)} 10^4$$

$$A = 8,59 \text{ cm}^2$$

$$N_{Ed, calculé} = \lambda.b_w.x_u.f_{cu} - A.(\sigma_{s1} - \sigma_{s2})$$

$$N_{Ed, calculé} = 0.8.1, 20.0, 06.16, 7 - 8, 59.10^{-4}.(435 - 117)$$

$$N_{Ed, calculé} = 0,689 MN$$

$$N_{Ed, calculé} >< N_{Ed, réel}$$

$$N_{Ed, calculé} = 0,689 \text{ MN} > 0,12633 \text{ MN} = N_{Ed, réel}$$

Comme $N_{Ed, \ calcul\'e} > N_{Ed, \ r\'eel}$, nous allons diminuer la valeur de x_u , ce qui aura pour effet de diminuer la contrainte σ_{s2} (mais faiblement) et d'augmenter la section d'aciers A (fortement) d'où le terme soustractif de $N_{Ed, \ calcul\'e}$ augmente.

Itérations suivantes :

Étant donné la pente du diagramme contraintes-déformations de l'acier, σ_{s2} varie très vite.

Essayons $x_u=0{,}055$ m et cherchons, par itérations successives à réaliser $N_{Ed,\ calcul\acute{e}} \approx N_{Ed,\ r\acute{e}el}$.

Pratique de l'eurocode 2

$$x_e = \frac{E_s \cdot \mathcal{E}_{cu2}}{E_s \cdot \mathcal{E}_{cu2} - f_{yd}} (h - d)$$
 0,13207547

Géométrie:

1,2 m 0,5 m 0,45 m

Béton:

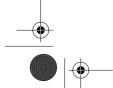
25 MPa 16,7 MPa 0,8 0,0035

Aciers:

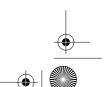
435 MPa

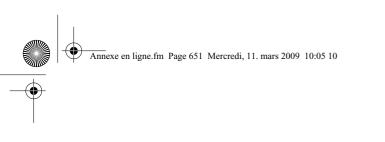
0 435

1000000 0,002175

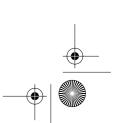

: valeur ou f_{yd} pour diagramme σ – ϵ à palier horizontal : valeur ou infini (1 000 000) pour diagramme σ – ϵ à palier horizontal

: valeur ou 0 pour diagramme σ — ϵ à palier horizontal


0,45 mMN 0,12633 MN


 M_{EdA} N_{Ed , réel

Sollicitations:



$\frac{d}{x} - \frac{x}{x}$	EUROPOLE EUR	0,0575 B -0,00045652	0,05625 B -0,0003889	0,058125 B -0,00048925	0,0565625 B 0,00040608	0,05578125 B 0,00036275	0,05617188 B 0,00038456	0,05597656 B 0,00037369	0.05607422 B	0,05612305 (B 0,00038185 4	B B,00038049 4	0,05608643 B 0,00037982	0,05609253 B 0,00038015	0,05609558 B 0,00038032	0,05609406 B 0,00038024	0,05609329 B B -0,0003802 -	0,05609329 0,05609367 0,05609348 B B B -0,0003802 -0,00038021	B B,000038021 4	0,05609339 0,05609344 B B -40,0003802 -0,00038021	0.0815 URS6032 0.0578128 0.05617188 0.0590764 0.0560712 0.05607124 0.05609643 0.05609633 0.05609539 0.05609549 0.0560954 0.056	0,05609346 0,0 B	0,05609345 B -0,00038021
	HONORODO EDRIGODO ENACIDADO AMBIGIDO ENISTADO EN	0,00045652	0,00038889	0,00048925	0,00040608	0,00036275	0,00038456	0,00037369	0,00037914),00038185) 64086000	0,00037982	0,00038015	0,00038032	0,00038024	0,0003802	0,0003802 0,00038022 0,00038021		0,0003802 0,	0,0003802 0,00038021 0,00038021 0,00038021	0038021 0,00	038021
	0	0	0	0	0	0	0	0	0	0	0	۰	0	0	0	0	0	0	0		0	۰
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0,02275 0,02513636	0,0238913		0,02359677	0,0243453	0,02473529	0,02453894	0,02463678	0,02458777	0,02456334 (0,02457555 (0,02458166	0,02457861	0,02457708	0,02457784	0,02457822	0,02457803 (0.02457813 0,	,02457818 0,	0.0256 0.0259677 0.024559 0.0247589 0.0245789 0.0246781 0.0246781 0.0246785 0.0245785 0.0245786 0.0245786 0.0245786 0.0245788 0.0245788 0.0245788 0.0245788 0.0245788 0.024578	2457814 0,0	51812
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0,00058333 0,00031818 0,00045622 0,00038899 0,00048925 0,0004608 0,00036225 0,00038456 0,00037369 0,00037914 0,00038185 0,00038185 0,00038015 0,00038015 0,00038024	0,000045652	0,00038889	0,00048925	0,00040608	0,00036275	0,00038456	0,000037369	0,00037914	0,00038185	0,00038049	0,00037982	0,00038015	0,00038032	0,00038024	0,0003802	0,00038022 (,00038021	0,0003802 0,	0,0003802 0,00038022 0,00038021 0,0003802 0,00038021 0,00038021 0,00038021	0038021 0,00	038021
	0,02275 0,02513636	0,0238913		0,02359677	0,0243453	0,02473529	0,02453894	0,02463678	0,02458777	0,02456334 (0,02457555 (0,02458166	0,02457861	0,02457708	0,02457784	0,02457822	0,02457803	0.02457813 0,	,02457818 0,	0.0224 0.0229677 0.024438 0.0243788 0.02245788 0.02246578 0.0245784 0.0245785 0.0245786 0.024578 0.024578 0.0245786 0.0245786 0.0245786 0.0245786 0.0245786 0.0245786 0	2457814 0,0	5187815
	11666667 6366666 91,80478 7777777 87,804624 12,14466 72,540196 76,1233 74,783112 75,272379 76,70201 76,00877 75,00071 76,000898 76,04902 76,049076 76,049196	91,3043478	877777778	97,8494624	81,2154696	72,5490196	76,9123783	74,7383112	75,8272379	76,3702801	6,0988772	15,9630871	76,0309895	76,0649352	76,0479628	76,0394763		76,041598 74	6,0405371 70	76,041598 76,0405371 76,0410675 76,0413327 76,0412001	H13327 76,1	H12001
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	435 435	435	435	435	435	435	435	435	435	435	435	435	435	435	435	435	435	435	435	435	435	435
	11666666 6366866 9134478 7777777 97894624 8121496 72,540196 76,912783 74,788112 73,872279 76,770281 76,08871 75,603898 76,064932 76,079628 76,094763 76,09877	91,3043478	877777778	97,8494624	81,2154696	72,5490196	76,9123783	74,7383112	75,8272379	. 1082016.97	76,0988772	15,9630871	76,0309895	76,0649352	76,0479628	76,0394763	76,0437196	76,041598 74	6,0405371 70	76,041598 76,0405371 76,0410675 76,0413327 76,0412001	H13327 76,1	100219
	435 435	435	435	435	435	435	435	435	435	435	435	435	435	435	435	435	435	435	435	435	435	435
$= \frac{\lambda J_{\mu_{\mu}} x_{\nu} \cdot f_{\nu \nu} \left(d - \frac{\lambda}{2} x_{\nu}\right) - M_{EM}}{\sigma_{s 2} \left(2d - h\right)}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$N_{EL, \text{ calcute}} = \lambda J_{\nu_e} x_{\nu_e} J_{\nu_e} - A \{ \sigma_{\nu_l} + \sigma_{\nu_L} \}$	0	0	0	0	0	0	0	0	0	0	۰	0	0	0	0	0	0	0	0	0	0	0
	v	v	v	v	v	v	v	v	v	v	v	v	v	v	v	v	v	v	v	v	v	v
$M_{EGI} > M_{RS} \qquad A = \frac{M_{EGI} - \lambda h_w x_n \cdot f_{co} \left\{ d - \frac{\lambda}{2} x_n \right\}}{\sigma_{s,2} \left(2d - h \right)}$	8,61901714 28,3240686 15,4358257	15,4358257		13,3697068	002557 1350706 1922409 23.286076 21.25775 21.65750 21.65775 21.65750 21.557	23,2689168	21,1239735	22,1627961	21,6353782	21,3777221	1,5060558	21,5705927	21,5382933	21,5221668	21,5302281		21,532244	1,5332521 2	1,5337561 2	21,532244 21,5332521 21,5337561 21,5335941 21,5333781 21,5334411	5333781 21.	334411
$N_{Ef. cabcut} = \lambda b_w . x_w . f_{ca} = A(\sigma_{st} - \sigma_{s2})$	0.05575798 0.05107289 0.05107289 0.05109000 0.02066777 0.0500000 0.114010 0.0509000 0.121690 0.121690 0	0,39131738	0,16142569	0,48109962	0,22668777	0,05090083	0,14412416	0,09897561	0,12189802	0,13309604 (0,12751852 (0,12471368	0,12611745	0,12681832	0,12646797	0,12629273	0,12638035 (,12633654 0,	12631464 0,	12632559 0,12	6633107 0,11	632833
	۸	٨	٨	٨	٨	v	^	V	v	^	^	٧	٧	٨	٨	٧	^	٨	v	V	٨	V

Cas du diagramme σ-ε à palier incliné 8.4.2

Moment de référence :

$$\begin{split} M_{RS} &= \left(\frac{h}{d} - 1\right). \left[\left(\lambda + \frac{\lambda^2}{2}\right) - \frac{\lambda^2}{d}.\frac{h}{d}\right] b_w.d^2.f_{cu} \\ M_{RS} &= \left(\frac{0.50}{0.45} - 1\right). \left[\left(0.8 + \frac{0.8^2}{2}\right) - \frac{0.8^2}{2}.\frac{0.50}{0.45}\right] 1,20.0,45^2.16,7 \\ M_{RS} &= 0.345 \text{ mMN} \end{split}$$

Position de l'axe neutre :

$$M_{EdA} > < M_{RS}$$
 $M_{EdA} = 0.450 \text{ mMN} > 0.345 \text{ mMN} = M_{RS}$ $x_u > h - d$ et les aciers supérieurs sont comprimés.

Comme h - d = 0.05 m, prenons $x_u = 0.06 \text{ m}$.

Première itération:

Premiere iteration:
$$x_{AB} = \frac{\varepsilon_{cu2}}{\varepsilon_{cu2} + \varepsilon_{ud}} d$$

$$x_{AB} = \frac{3.5}{3.5 + 45} 0.45 = 0.032 \text{ m}$$

$$x_{u} >< x_{AB}$$

$$x_{u} = 0.06 \text{ m} > 0.032 \text{ m} = x_{AB} \Rightarrow \text{ Pivot B}$$

$$x_{e} = \frac{E_{s}.\varepsilon_{cu2}}{E_{s}.\varepsilon_{cu2} - f_{yd}} (h - d)$$

$$x_{e} = \frac{2.10^{5}.3.5.10^{-3}}{2.10^{5}.3.5.10^{-3} - 435} (0.50 - 0.45) = 0.132 \text{ m}$$

$$x_{u} >< x_{e}$$

$$x_{u} = 0.06 \text{ m} < 0.132 \text{ m} = x_{e}$$

$$\Rightarrow \sigma_{s2} = E_{s}.\varepsilon_{cu2} \frac{x_{u} - (h - d)}{x}$$

$$\sigma_{s2} = 2.10^5.0,0035 \frac{0,06 - (0,50 - 0,45)}{0,06} = 117 \text{ MPa}$$

$$\varepsilon_{s1} = \varepsilon_{cu2} \frac{d - x_u}{x_u}$$

$$\varepsilon_{s1} = 0,0035 \frac{0,45 - 0,06}{0,06} = 0,0228$$

$$\varepsilon_{s1} > < \varepsilon_{yd} = \frac{f_{yd}}{E_s}$$
 $\varepsilon_{s1} = 0,0228 > 0,00218 = \varepsilon_{yd} = \frac{435}{2.10^5}$

$$\Rightarrow$$
 $\sigma_{s1} = A + B.\epsilon_{s1} = 433, 2 + 727, 27.0, 0228$ $\sigma_{s1} = 450 \text{ MPa}$

$$A \; = \; \frac{M_{EdA} - \lambda.b_{\rm w}.x_{\rm u}.f_{\rm cu} \left(d - \frac{\lambda}{2}x_{\rm u}\right)}{\sigma_{s2}(2d - h)} \label{eq:AB}$$

$$A = \frac{0,450 - 0,8.1,20.0,06.16,7\left(0,45 - \frac{0,8}{2} \ 0,06\right)}{117(2.0,45 - 0,50)} 10^4$$

$$A = 8,59 \text{ cm}^2$$

$$N_{Ed, calculé} = \lambda.b_w.x_u.f_{cu} - A.(\sigma_{s1} - \sigma_{s2})$$

$$N_{Ed, calculé} = 0.8.1, 20.0, 06.16, 7 - 8, 59.10^{-4}.(450 - 117)$$

$$N_{Ed. calculé} = 0,475 MN$$

 $N_{Ed, calcul\'e} >< N_{Ed, r\'eel}$

 $N_{Ed, calcul\acute{e}} = 0,475 \text{ MN} > 0,12633 \text{ MN} = N_{Ed, r\acute{e}el}$

Comme $N_{Ed,\ calcul\'e} > N_{Ed,\ r\'eel}$, nous allons diminuer la valeur de x_u , ce qui aura pour effet de diminuer la contrainte σ_{s2} (mais faiblement) et d'augmenter la section d'aciers A (fortement) d'où le terme soustractif de $N_{Ed,\ calcul\'e}$ augmente.

Itérations suivantes :

Étant donné la pente du diagramme contraintes-déformations de l'acier, σ_{s2} varie très vite.

Essayons $x_u = 0.055 \text{ m}$ et cherchons, par itérations successives à réaliser $N_{\text{Ed, calculé}} \approx N_{\text{Ed, réel}}$.

 $x_{e} = \frac{E_{s} \cdot \mathcal{E}_{eut2}}{E_{s} \cdot \mathcal{E}_{eut2} - f_{yut}} (h - d) \quad 0,132075472$

: valeur ou 0 pour diagramme σ – ϵ à palier horizontal

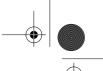
: valeur ou f_{yd} pour diagramme σ – ϵ à palier horizontal : valeur ou infini (1 000 000) pour diagramme σ – ϵ à palier horizontal

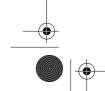
25 MPa 16,7 MPa 0,8 0,0035 435 MPa 727,27 433,2 0,45 mMN 0,12633 MN 1,2 m 0,5 m 0,45 m 0,045 M_{EdA} N_{Ed} , réel f_{ck} f_{cu} λ ϵ_{cu2} f_{yd} B

Aciers:

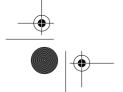
Données:

Géométrie:


Béton:


Sollicitations:

Calculs itératifs : x _x	Xx	90'0	0,055	0,0575	0,05625	0,055625	0,0559375	0,05609375 0,056171875 0,056210938	0,056171875		0,056230469	0,056240234	0,056245117	0.056242676	0.056230469 0.056240234 0.056245117 0.056242676 0.056241455 0.056242065	0,056242065	0,05624176	0,056241608 (0,056241684
	Pivot	В	В	В	В	В	ш	В	В	В	В	В	В	В	ш	ш	В	В	В
Piv B	$\varepsilon_{,2} = \varepsilon_{,\alpha,2} \frac{h - d - x_{_W}}{x_{_W}}$	-0,000583333	0,000318182	-(1,00068333 -(1,0001818) 2 -(1,00045622 -(1,00038889 -(1,00058889 -(1,00058989 -(1,00058989 -(1,00058689 -(1	- 688888000°C)- 686888000,0	- 805175000,	,000380223 -	,000384562	0,000386727	- 80878600,	.000388349	- 619888000'0	0,000388484 -		-0,00038845 -0,000388433 -0,000388425	0,000388433	0,000388425 +	-0,000388429
	$\mathbb{E}_{y,2} = \mathbb{E}_{(y,2)} \frac{X_y - (h - d)}{X_y}$	0,000583333	0,000318182	0,000456522	0,000388889	0,000353933	0,000371508 0,000380223 0,000384562),000380223),000384562	0,000386727	0,000387808	0,000388349	91988619	0,000388484	0,000388349 0,000388619 0,000388484 0,000388416	0,00038845 0,000388433		0,000388425 (0,000388429
Piv A	$\varepsilon_{x2} = \varepsilon_{md} \frac{h - d - x_u}{d - x_u}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	$e_{,z} = e_{,xd} \frac{x_{,\alpha} \cdot (h \cdot d)}{d - x}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Piv B	$\varepsilon_{s1} = \varepsilon_{cn/2} \frac{d - x}{x_s}$	0,02275	0,02275 0,025136364 0,023891304	0,023891304	0,0245	0.0245 0.024814607 0.02465625 0.024577994 0.024538943 0.024519458 0.02459426 0.02450480 0.02450243 0.02450424 0.02450999 0.024504178	,024656425 (,024577994	,024538943	0,024519458	0,024509726	0,024504862	0,024502431	0,024503646	0,024504254	0,02450395	0,024504102		0,02450414
Piv A	8 1 = 8 md	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Retenu	8,2	0,000583333	0,000318182	0,00058333 0,00018182 0,00045632 0,00038889 0,000355933 0,000371508 0,00038023 0,000384562 0,000386727 0,000387808 0,000388249 0,00038844 0,000388416	0,000388889	0,000353933),000371508	,000380223	,000384562	0,000386727	0,000387808	0,000388349	619886000	0,000388484	0,000388416	0,00038845 0,000388433 0,000388425	0,000388433		0,000388429
Retenu	8,31	0,02275	0,025136364	0,023891304	0,0245	0,024814607 0,024656425 0,024577994 0,024538943	,024656425 (,024577994	0,024538943	0,024519458	0,024509726	0,024504862 0,024502431	0,024502431	0,024503646 0,024504254	0,024504254	0,02450395 0,024504102		0,024504178	0,02450414
Hooke	$\sigma_{s2} = E_{s} \cdot e_{s2}$	116,6666667	63,63636364	63,63636364 91,30434783 77,7777778	877777777	70,78651685 74,30167598 76,04456825	74,30167598	76,04456825	76,9123783	77,34537874	7,56165335	7,66973433	7,72376074	77,69674871	77,68324181	76,9123783 77,24537874 77,56165335 77,66973433 77,72376074 77,69674871 77,68324181 77,68999533 77,68661859 77,68493021	77,68661859	77,68493021	77,6857744
	$\sigma_{sl} = E_s \varepsilon_{sl}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Palier	$\sigma_{s2} = A + B \varepsilon_{s2}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	$\sigma_{rl} = A + B R_{sl}$	449,7453925	451,4809232	449,7453925 451,4809232 450,5754289	451,018115	451,246919 451,1318779 451,074838 451,0464371 451,0322662 451,0251881	921,1318779	451,074838	151,0464371	151,0322662		451,021651	151,0198828	451,0207669	451,0212089	451,021651 451,0198828 451,0207669 451,0212089 451,0209879 451,0210984 451,0211536	451,0210984		451,021126
Retenu	σ_{s2}	116,6666667	63,63636364	91,30434783	8777777777	70,78651685	74,30167598	76,04456825	76,9123783	77,34537874	77,56165335	77,66973433	77,72376074	77,69674871	77,68324181	77,68999533 77,68661859		77,68493021	77,6857744
Retenu	σ_{sl}	449,7453925	451,4809232	450,5754289	451,018115	451,246919 451,1318779		451,074838 451,0464371		451,0322662	451,0251881	451,021651	451,0198828	451,0207669	451,0212089	451,0207669 451,0212089 451,0209879 451,0210984	451,0210984	451,0211536	451,021126
$M_{EM} \le M_{ES}$	$M_{Edd} \leq M_{RS} \qquad A = \frac{\lambda \mathcal{L}_{h_w} x_w J_{co} \left(d - \frac{\lambda}{2} x_w \right) - M_{Edd}}{\sigma_{x^2} (2d - h)}$	0	0	0	0	0	۰	0	0	0	0	0	0	0	0	0	0	0	0
	$N_{\mathit{Ed},\; \mathit{colonik}} = \lambda . b_{w}.x_{s}.f_{cu} - A \{\sigma_{x1} + \sigma_{x2}\}$	0	٥	٥	0	٥	٥	0	0	0	0	0	0	0	0	0	0	٥	0
	N_{Ed} , calcule $>< N_{Ed}$, rect	٧	٧	٧	٧	٧	V	٧	٧	٧	٧	٧	٧	v	٧	٧	٧	٧	٧
$M_{Edd} > M_{ES}$	$M_{Edd} > M_{RS}$ $A = \frac{M_{Edd} - \lambda L_{B_m} x_w \cdot J_{cm} \left(d - \frac{\lambda}{2} x_n\right)}{\sigma_{A,2} (2d - k)}$	8,619017143 28,52406857		15,43582571	20,725875	24,20697756	22,37842396 21,53184083	21,53184083	21,1239735	20,92372618	20,82450389	20,77511562	20,75047689	20,76279165	20,76895248 20,76587177	71178597177	20,76741205	20,76818225	20,76779715
	$N_{E\delta, \text{ calkinfo}} = \lambda_L b_w.x_u.f_{cw} = A.(\sigma_{s1} - \sigma_{s2})$	0,674838875	-0,224530481	0,367275421	0,128226743 -0,029199642		0,053503398 (0,091785793	0,110227706	0,119281539	0,123767592	0,126000514 0,127114463	0,127114463	0,126557698	0,126279158 0,126418441	0,126418441	0,126348803	0,126313981	0,126331392
	$N_{Ed.\ coloub} \times N_{Ed.\ rotol}$	۸	v	٨	٨	٧	v	v	v	v	٧	٧	٨	٨	٧	۸	۸	v	٨



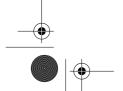
Vérification à l'ELU

d'une section rectangulaire dont on connaît les armatures

On distingue les deux cas ci-après.

1. Section sans aciers comprimés $(A_{s2} = 0)$

1.1 Aciers avec diagramme σ - ϵ à palier horizontal


- 1/ Calculer μ_{lu} et en déduire $M_{lu} = \mu_{lu}.b_w.d^2.f_{cu}$.
- 2/ Si $M_{Ed} \le M_{lu}$, le fait d'avoir $A_{s2} = 0$ est correct. Sinon, il faut prévoir des aciers comprimés et, comme la section n'en comporte pas, tout le dimensionnement (détermination de A_{s2} , puis de A_{s1}) est à reprendre.
- 3/ En déduire la position de l'axe neutre par l'équation d'équilibre des forces :

$$\lambda.b_{w}.x_{u}.f_{cu} - A_{s1}.f_{yd} = 0 \implies x_{u} = \frac{A_{s1}.f_{yd}}{\lambda.b_{w}.f_{cu}}.$$

- 4/ Calculer la valeur du bras de levier : $z_c = d \frac{\lambda}{2} x_u$.
- 5/ En déduire le moment résistant à l'ELU : $M_{Ru} = A_{s1}.f_{vd}.z_{c}$
- 6/ Il faut vérifier : $M_{Ru} \ge M_{Ed}$, sinon la section d'armatures tendues est insuffisante.

1.2 Aciers avec diagramme σ - ϵ à palier incliné

- 1/ Calculer μ_{lu} et en déduire $M_{lu} = \mu_{lu}.b_w.d^2.f_{cu}$.
- 2/ Si $M_{Ed} \le M_{lu}$, le fait d'avoir $A_{s2} = 0$ est correct. Sinon, il faut prévoir des aciers comprimés et, comme la section n'en comporte pas, tout le dimensionnement (détermination de A_{s2} , puis de A_{s1}) est à reprendre.

3/ En déduire par approximations successives la position de l'axe neutre par l'équation d'équilibre des forces :

a)
$$\lambda . b_w . x_u . f_{cu} - A_{s1} . \sigma_{s1} = 0 \implies x_u = \frac{A_{s1} . \sigma_{s1}}{\lambda . b_w . f_{cu}}$$

avec
$$\sigma_{s1} = f_{vd}$$

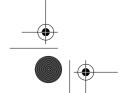
b) Si
$$x_u \le \alpha_{AB}.d \implies \epsilon_{s1} = \epsilon_{ud} \implies$$

$$\sigma'_{s1} = \begin{cases} 454 \text{ MPa} : \text{S} 500 \text{ A}, \\ 466 \text{ MPa} : \text{S} 500 \text{ B}, \\ 493 \text{ MPa} : \text{S} 500 \text{ C}. \end{cases}$$

Si
$$x_u > \alpha_{AB}.d \implies \epsilon_{s1} = \epsilon_{cu2} \frac{1 - x_u}{x_u} \implies$$

$$\sigma'_{s1} = \begin{cases} E_s.\epsilon_{s1} \ \text{si} \ \epsilon_{s1} < \epsilon_{yd} = \frac{f_{yd}}{E_s}, \\ \\ A + B.\epsilon_{s1} \ \text{si} \ \epsilon_{s1} \geq \epsilon_{yd} = \frac{f_{yd}}{E_s}. \end{cases}$$

les coefficients A et B sont ceux figurant au \S 2.4.2.1, chapitre 3 : « Béton armé – Généralités », p. 53.


- c) comparer σ'_{s1} à la contrainte utilisée précédemment pour calculer x_u et recommencer les étapes a/ et b/ avec σ'_{s1} jusqu'à ce que la valeur de la contrainte des aciers tendus se stabilise.
- 4/ Calculer la valeur du bras de levier : $z_c = d \frac{\lambda}{2} x_u$.
- 5/ En déduire le moment résistant à l'ELU : $M_{Ru} = A_{s1}.\sigma_{s1}.z_{c}$.
- 6/ Il faut vérifier : $M_{Ru} \ge M_{Ed}$, sinon la section d'armatures tendues est insuffi-

2. Section avec aciers comprimés $(A_{s2} \neq 0)$

2.1 Aciers avec diagramme σ - ϵ à palier horizontal

Peu importe, dans ce cas, que M_{Ed} soit supérieur ou non à M_{lu} . Le mode opératoire est le suivant :

- 1/ calculer la contrainte équivalente des aciers comprimés à l'ELU :
 - a) si σ_c est limitée :

$$\sigma_{\rm s2, \ e} = 0.6.\alpha_{\rm e}.\gamma.f_{\rm ck} - \delta'(A.f_{\rm ck} + B) \le 435 \,{\rm MPa}\,({\rm S}\,500)$$

les coefficients A et B sont ceux figurant au § 3.3.3, chapitre 7 : « Flexion simple », p. 175, pour les aciers avec diagramme σ - ϵ à palier horizontal.

b) si σ_c n'est pas limitée :

$$\alpha_l = \frac{1}{\lambda} \Big[1 - \sqrt{1 - 2.\mu_{lu}} \, \Big] \; avec \; \mu_{lu} = \mu_{ls}$$

$$\sigma_{s2, e} = Min \begin{cases} E_s. v_{s2, u} = E_s \frac{\alpha_1 - \delta'}{\alpha_1} \text{ où } \delta' = \frac{d'}{d} \\ f_{yd} \end{cases}$$

2/ si M_{Ed} > M_{lu} , vérifier que la section d'aciers comprimés convient :

$$A_{s2} \ge \frac{M_{Ed} - M_{lu}}{(d - d')\sigma_{s2, e}}.$$

3/ déterminer la position de l'axe neutre par l'équation d'équilibre des forces :

$$\lambda.b_{\rm w}.x_{\rm u}.f_{\rm cu}-A_{\rm s1}.f_{\rm yd}+A_{\rm s2}.\sigma_{\rm s2,\ e}=0 \ \ \Rightarrow \ \ x_{\rm u}=\frac{A_{\rm s1}.f_{\rm yd}-A_{\rm s2}.\sigma_{\rm s2,\ e}}{\lambda.b_{\rm w}.f_{\rm cu}}.$$

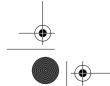
- 4/ calculer la valeur du bras de levier du béton seul : $z_c = d \frac{\lambda}{2} x_u$.
- 5/ en déduire le moment résistant à l'ELU (par rapport aux aciers tendus) :

$$M_{Ru} = \lambda.b_{w}.x_{u}.f_{cu}.z_{c} + A_{s2}.\sigma_{s2, e}[d - d'].$$

6/ il faut vérifier : $M_{Ru} \ge M_{Ed}$, sinon la section d'armatures (tendues et/ou comprimées) est insuffisante.

2.2 Aciers avec diagramme σ - ϵ à palier incliné

Peu importe, dans ce cas, que M_{Ed} soit supérieur ou non à M_{lu} . Le mode opératoire est le suivant :


1/ calculer la contrainte équivalente des aciers comprimés à l'ELU :

a) si σ_c est limitée :

$$\sigma_{\rm s2,\ e} = 0.6.\alpha_{\rm e}.\gamma.f_{\rm ck} - \delta' \big({\rm A.f_{ck}} + {\rm B} \big) \leq 435~{\rm MPa} \left({\rm S}~500 \right)$$

les coefficients A et B sont ceux figurant au § 3.3.3, chapitre 7 : « Flexion simple », p. 175, pour les aciers avec diagramme σ - ϵ à palier incliné.

b/ si σ_c n'est pas limitée :

$$\alpha_1 = \frac{1}{\lambda} \Big[1 - \sqrt{1 - 2.\mu_{lu}} \; \Big] \; \; avec \; \; \mu_{lu} = \mu_{ls}$$

$$v_{s2, u} = \epsilon_{cu2} \frac{\alpha_1 - \delta'}{\alpha_1} \text{ où } \delta' = \frac{d'}{d}$$

$$\sigma_{s2, e} = Min \begin{cases} E_s.\nu_{s2, u} = E_s.\epsilon_{cu2} \frac{\alpha_1 - \delta'}{\alpha_1} \text{ où } \delta' = \frac{d'}{d} \\ A + B.\nu_{s2, u} \end{cases}$$

les coefficients A et B sont ceux figurant au § 2.4.2.1, chapitre 3 : « Béton armé - Généralités », p. 69.

2/ si $M_{Ed} > M_{lu}$, vérifier que la section d'aciers comprimés convient :

$$A_{s2} \ge \frac{M_{Ed} - M_{lu}}{(d - d')\sigma_{s2, e}}.$$

 $A_{s2} \ge \frac{M_{Ed} - M_{lu}}{(d - d')\sigma_{s2, e}}$.

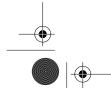
3/ déterminer par approximations successives la position de l'axe neutre par l'équation d'équilibre des forces :

a)
$$\lambda.b_w.x_u.f_{cu} - A_{s1}.\sigma_{s1} + A_{s2}.\sigma_{s2} = 0 \implies x_u = \frac{A_{s1}.\sigma_{s1} - A_{s2}.\sigma_{s2}}{\lambda.b_w.f_{cu}}$$
 avec $\sigma_{s1} = f_{yd}$ et $\sigma_{s2} = \sigma_{s2}$, e

b) Si
$$x_u \le \alpha_{AB}.d \implies \epsilon_{s1} = \epsilon_{ud} \implies \sigma'_{s1} = \begin{cases} 454 \text{ MPa}: \text{S} 500 \text{ A}, \\ 466 \text{ MPa}: \text{S} 500 \text{ B}, \\ 493 \text{ MPa}: \text{S} 500 \text{ C}. \end{cases}$$

Si
$$x_u > \alpha_{AB}.d \implies \epsilon_{s1} = \epsilon_{cu2} \frac{1 - x_u}{x_u} \implies$$

$$\sigma'_{s1} = \begin{cases} E_s.\varepsilon_{s1} & \text{si } \varepsilon_{s1} < \varepsilon_{yd} = \frac{f_{yd}}{E_s}, \\ A + B.\varepsilon_{s1} & \text{si } \varepsilon_{s1} \ge \varepsilon_{yd} = \frac{f_{yd}}{E_s}. \end{cases}$$


les coefficients A et B sont ceux figurant au § 2.4.2.1, chapitre 3 : « Béton armé - Généralités », p. 69,

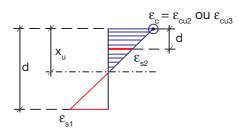
c) comparer $\sigma'_{\,s1}$ à la contrainte utilisée précédemment pour calculer x_u et recommencer les étapes a) et b) avec σ'_{s1} jusqu'à ce que la valeur de la contrainte des aciers tendus se stabilise.

4/ calculer la valeur du bras de levier du béton seul : $z_c = d - \frac{\kappa}{2} x_u$

5/ en déduire le moment résistant à l'ELU (par rapport aux aciers tendus) :

$$M_{Ru} = \lambda . b_w . x_u . f_{cu} . z_c + A_{s2} . \sigma_{s2, e} [d - d'].$$

6/ il faut vérifier : $M_{Ru} \ge M_{Ed}$, sinon la section d'armatures (tendues et/ou comprimées) est insuffisante.


Remarque pour les aciers avec diagramme contraintes-2.3 déformations à palier horizontal

Remarque préliminaire 2.3.1

La condition pour que la contrainte des armatures comprimées soit obtenue par la droite de Hooke du diagramme contraintes-déformations des aciers est obtenue de la façon suivante :

$$\varepsilon_{s2} = \varepsilon_{cu2} \frac{x_u - d'}{x_u}$$

$$\sigma_{s2} = E_s.\varepsilon_{s2} = E_s.\varepsilon_{cu2} \frac{x_u - d'}{x_u}$$

D'où, pour que la contrainte appartienne à la droite de Hooke, il faut que :

$$\sigma_{s2} = E_s.\epsilon_{cu2} \, \frac{x_u - d'}{x_u} \le f_{yd} \quad \Rightarrow \quad x_u \le \frac{E_s.\epsilon_{cu2}}{E_s.\epsilon_{cu2} - f_{yd}} \, d'$$

Ce qui conduit, pour les cas courants où l'on a un béton de classe au plus égale à C50/60 à :

$$E_s.\varepsilon_{cu2} = 2.10^5.3, 5.10^{-3} = 700 \implies x_u \le \frac{700}{700 - f_{vd}} d'$$


Méthode 2.3.2

1/ Se donner une position de départ de l'axe neutre :

$$\left. \begin{array}{l} \lambda.b_w.x_{u1}.f_{cu} + A_{s2}.\sigma_{s2} - A_{s1}.\sigma_{s1} = 0 \\ \sigma_{s1} = \sigma_{s2} = f_{yd} \end{array} \right\} \quad \Rightarrow \quad x_{u1} = \frac{\left(A_{s1} - A_{s2}\right).f_{yd}}{\lambda.b_w.f_{cu}}$$

Si
$$x_{u1} \ge \frac{700.d'}{700 - f_{vd}}$$
, prendre :

$$M_{Ru} \; = \; \lambda.b_{\rm w}.x_{\rm u1}.f_{\rm cu}\!\left(d-\frac{\lambda}{2}x_{\rm u1}\right) + A_{\rm s2}.f_{\rm yd}(d-d') \, . \label{eq:Ru}$$

Pratique de l'eurocode 2

Puis faire la vérification de l'étape 4 ci-dessous.

3/ Si
$$x_{u1} < \frac{700.d'}{700 - f_{vd}}$$
:

a) choisir $x_{u2} < x_{u1}$ et calculer :

 $\sigma_{s2, u2} = 700 \frac{x_{u2} - d'}{x_{u2}}$ si $x_{u2} \ge \alpha_{AB}.d$, ce qui est toujours le cas pour les aciers avec diagramme σ - ϵ à palier horizontal,

$$\sigma_{\rm s2,\ u2} = 2 \ .10^5. \epsilon_{\rm ud} \, \frac{x_{\rm u2} - d'}{d - x_{\rm u2}} \, {\rm si} \, \, x_{\rm u2} < \alpha_{\rm AB}.d,$$

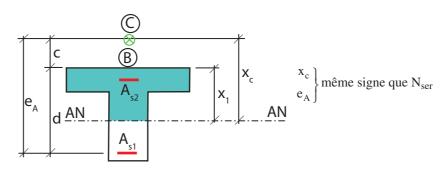
b) en déduire la nouvelle position de l'axe neutre :

$$x_{u3} = \frac{A_{s1}.f_{yd} - A_{s2}.\sigma_{s2, u2}}{\lambda.b_{w}.f_{cu}}$$

- c) recommencer avec cette valeur le calcul de $\sigma_{s2,~u3},$ d'où $x_{u4},$ etc., jusqu'à trouver $x_{ui+1}\thickapprox x_{ui}$
- d) d'où la valeur du moment résistant à l'ELU par rapport aux aciers tendus :

$$M_{Ru} \; = \; \lambda.b_{\rm w}.x_{ui}.f_{cu}\bigg(d-\frac{\lambda}{2}x_{ui}\bigg) + A_{s2}.\sigma_{s2,\,ui}[d-d'] \, . \label{eq:Ru}$$

4/ il faut vérifier : $M_{Ru} \ge M_{Ed}$, sinon la section d'armatures (tendues et/ou comprimées) est insuffisante.

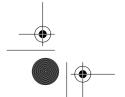


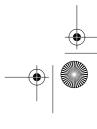
A6

Flexion composée –

Vérification des contraintes à l'ELS pour une section quelconque

1. Notations

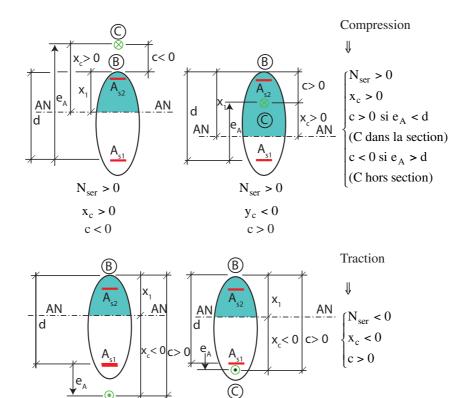

 x₁ = distance toujours positive de la fibre la plus comprimée B de la section à l'axe neutre,

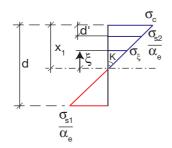

 x_c = distance du centre de pression C à l'axe neutre, de même signe que N_{ser} ,

 e_A = distance du centre de gravité des aciers tendus au centre de pression C, de même signe que N_{ser} ,

c = distance de la fibre la plus comprimée B de la section au centre de pression C définie par :

 $c = d - e_A$



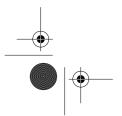

 $N_{ser} < 0$ $x_c < 0$ c > 0

$$N_{ser} < 0$$

$$x_c < 0$$

$$c > 0$$

On en déduit :




$$x_1 = x_c + c,$$

K = coefficient angulaire du diagramme des contraintes,

$$\sigma_{\xi} = K.\xi$$
,

$$\alpha_{e} = \frac{E_{s}}{E_{c, eff}}$$

2. Caractéristiques géométriques des sections

 $S_{cf} =$ moment statique, par rapport à l'axe neutre, de la section homogène réduite A_{cf} :

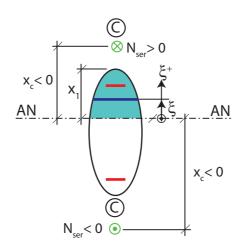
$$S_{cf} = \int_{A_{cf}} \xi . \alpha_e . dA_{cf}$$

avec

$$\alpha_e = \begin{cases} 1 \text{ si } dA_{cf} = \text{fibre de béton comprimé} \\ \alpha_e \text{ si } dA_{cf} = \text{fibre d'acier} \end{cases}$$

Remarque

Comme la résultante des contraintes normales n'est pas nulle, le moment statique par rapport à l'axe neutre de la section homogène réduite totale ($A_{cf}=\left(A_{c}-A_{ct}\right)+\alpha_{e}.A_{s1}+\alpha_{e}.A_{s2}$) n'est pas nul (S_{cf} est différent de S_{1} utilisé au § 1.1.3, chapitre 8 : « Effort tranchant », p. 293).


 I_{cf} = moment d'inertie, par rapport à l'axe neutre, de la section homogène réduite A_{cf} :

$$I_{cf} = \int_{A_{cf}} \xi^2 . \alpha_e . dA_{cf}$$

 S_c = moment statique, par rapport à la parallèle à l'axe neutre passant par C, de la section homogène réduite A_{cf} :

$$S_{c} = -\!\!\int_{A_{cf}} \! \left(x_{c} - \xi\right) \! \alpha_{e}.dA_{cf} = -x_{c} \!\!\int_{A_{cf}} \alpha_{e}.dA_{cf} + S_{cf}$$

le signe négatif provenant du fait que l'aire est au-dessous de l'axe passant par C lorsque $x_c > 0$ (ou $N_{ser} > 0$) ou au-dessus de cet axe lorsque $x_c < 0$ (ou $N_{ser} < 0$).

 I_c = moment d'inertie, par rapport à la parallèle à l'axe neutre passant par C, de la section homogène réduite A_{cf}:

$$I_{c} \! = \! \int_{A_{cf}} \!\! \left(\! x_{c} \! - \! \xi \! \right)^{2} \! \alpha_{e} . dA_{cf} \! = \! x_{c}^{2} \underbrace{ \int_{A_{cf}} \!\! \alpha_{e} . dA_{cf}}_{I_{cf}} - 2.x_{c} \! \int_{\underbrace{A_{cf}} \!\! S_{cf}} \!\! \frac{\xi . \alpha_{e} . dA_{cf}}{S_{cf}} + \underbrace{ \int_{A_{cf}} \!\! \xi^{2} . \alpha_{e} . dA_{cf}}_{I_{cf}} \right)$$

$$I_c = -x_c.S_{cf} - x_c.S_c + I_{cf}$$

ou encore:

$$I_c + x_c.S_c = I_{cf} - x_c.S_{cf}$$

Position de l'axe neutre x_c **3**.

La force élastique élémentaire a pour valeur :

$$dF = \sigma_{\xi}.\alpha_{e}.dA_{cf} = K.\xi.\alpha_{e}.dA_{cf}$$

En écrivant que le moment des forces élastiques élémentaires est nul en C, on

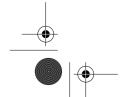
$$K \int_{A_{cf}} \xi . \alpha_e . dA_{cf} \left(x_c - \xi \right) = 0$$

$$K.x_c \int_{A_{cf}} \xi.\alpha_e.dA_{cf} - K \int_{A_{cf}} \xi^2.\alpha_e.dA_{cf} = 0$$

$$K[x_c.S_{cf} - I_{cf}] = 0 \implies x_c = \frac{I_{cf}}{S_{cf}}$$

ou encore:

$$I_c + x_c.S_c = I_{cf} - x_c.S_{cf} = 0 \implies x_c = -\frac{I_c}{S_c}$$


Remarque

Pour les sections rectangulaires ou en T, $\rm x_c$ s'obtient par résolution d'une équation du troisième degré (voir § 2.4.3.1 et 2.4.3.2, chapitre 11 : « Flexion composée », p. 443).

Expression du coefficient angulaire K 4.

En écrivant que le moment des forces élastiques élémentaires par rapport à l'axe neutre vaut:

$$M_{\text{ser/AN}} = N_{\text{ser}}.x_{\text{c}}$$

il vient:

$$N_{ser}.x_c = \int_{A_{cf}} \sigma_{\xi}.\xi.\alpha_e.dA_{cf} = K \int_{A_{cf}} \xi^2.\alpha_e.dA_{cf} = K.I_{cf}$$

d'où:

$$K = \frac{N_{\text{ser}}.x_c}{I_{\text{cf}}}$$

 $N_{ser}.x_c$ est différent de $N_{ser}.e_0$ = M_{serG_0} \Rightarrow K est différent de $\frac{M_{ser}}{I_{cf}}$ comme c'était le cas en flexion simple.

Calcul des contraintes 5.

Pour une section droite quelconque donnée (béton et position des armatures), le processus de calcul s'établit comme suit :

1/ calculer les caractéristiques géométriques de la section par rapport à une parallèle à l'axe neutre passant par le centre de pression C :

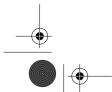
$$S_{c} = -\int_{A_{cf}} (x_{c} - \xi) \alpha_{e}.dA_{cf} \quad \Rightarrow \quad S_{c}(x_{c})$$

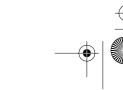
$$I_c = \int_{A_{cf}} (x_c - \xi)^2 \alpha_e . dA_{cf} \implies I_c(x_c)$$

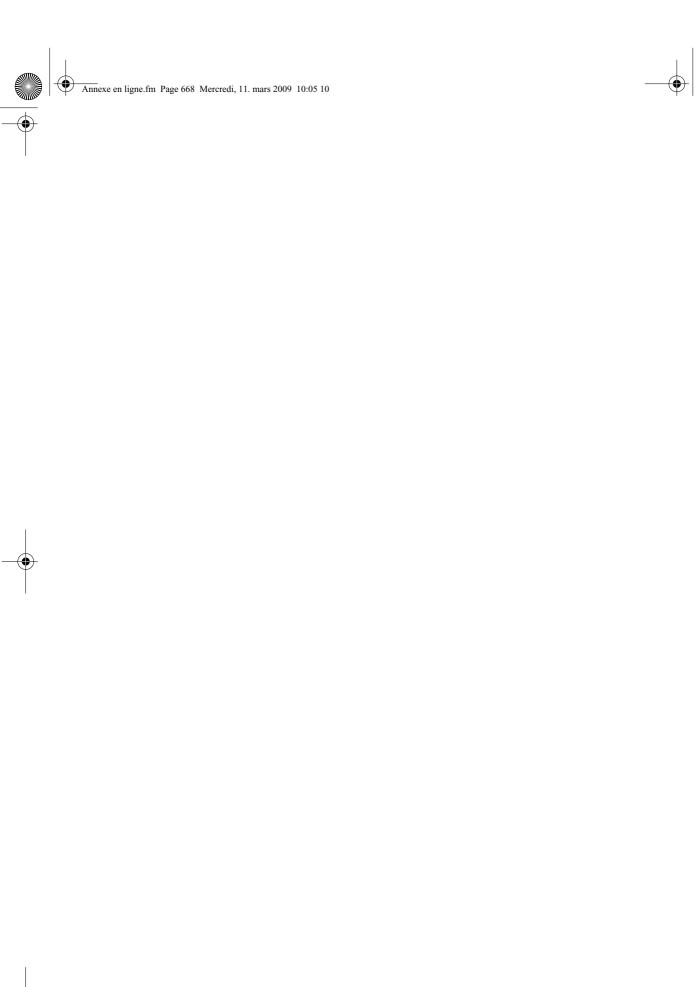
2/ en déduire la profondeur de l'axe neutre :

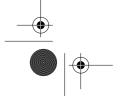
$$x_{c} = -\frac{I_{c}(x_{c})}{S_{c}(x_{c})}$$

 \Rightarrow x_c par résolution de cette équation. \Rightarrow $x_1 = x_c + c$


$$\Rightarrow$$
 $x_1 = x_c + c$


3/ faire la vérification des contraintes :


$$\sigma_{c} = K.x_{1} \le \overline{\sigma_{c}}$$
 pour les classes d'exposition XD, XF et XS


$$\sigma_{s1} = \alpha_e.K(d - x_1) \le \overline{\sigma_s}$$

$$\sigma_{s2} = \alpha_e.K(x_1 - d')$$

